natESM
44 gEe::::-C-::::-E

Porting the hydrologic model ParFlow to

accelerator architectures using eDSL and Kokkos ~ 9%

FUFEE"'IL-IrlgEEU"'ULI"'I

Jorg Benke! Muhammad Fahad? Daniel Caviedes-Voullieme!? Andreas Herten!, Stefan Kollet?

L Jiilich Supercomputing Centre (JSC), Forschungszentrum Jilich GmbH, Jiilich, Germany
2 Institut fiir Bio- und Geowissenschaften - Agrosphare (IBG-3), Forschungszentrum Jiilich GmbH, Jiilich, Germany

Introduction and Background

ParFlow (https://github.com/parflow) is an open-source, modular, parallel watershed flow model which is written in Plant available water

2021-08-18 daily sum, 30cm depth

C. ParFlow includes fully-integrated overland flow, the ability to simulate complex topography, geology and
heterogeneity and coupled land-surface processes including the land-energy budget, biogeochemistry and snow (via
CLM). ParFlow solves the 3D Richards equation and the 2D kinematic/diffusive surface flow.

ParFlow has been abstracted early on with an so-called embedded Domain Specific Language (eDSL) approach
leading to a best-practice separation-of-concerns, which means the domain scientist /developer does not see for
example a single MPI call when using distributed memory parallelization in ParFlow. In the recent past, ParFlow's
eDSL has been expanded to incorporate backends utilizing GPUs; one backend with native CUDA support and one
backend incorporating Kokkos-CUDA. During the natESM and EoCoE-Ill projects [2,3] Kokkos-HIP was also |
incorporated to achieve a high degree of performance portability. S

Courtesy of Klaus Goérgen and Alexandre Belleflamme

Fraction of total Paw []

embedded Domain Specific Language (eDSL) in ParFlow - The general concept

J: th;F;iCﬂLWUP in 3D space spanning indices i,j,k Same loop, abstracted into the BoxLoopI0 macro = ParFlow is using an embedded Domain Speciﬁc La nguage
ouble *Tp; ouble *fp;
double *fp; * J eDSI_ -
double value; nul;ie fi’ _ (i) ; . .
subvector *f_sub; Lol vl = This approach results in a best-practice separation-of-concerns,
ubvector *f_sub;
/* some code missing here*/ which means that the developer does not see for example

/* some code missing here*/
for(k = iz; k < iz + nz; k++)

for(j = iy; j < iy + ny; j++) _ BoxLoopIO(i, j, k, ix, iy, iz, nx, ny, nz,

complex loops, allocation of memory or a single MPI call when

for(i = ix; j < ix + nx; 1+%) { programmlng PaI’F|OW

t o int ip = SubvectorEltIndex(f_sub, i, j, k);
int ip = SubvectorEltIndex(f_sub, i, j, k), fplip] = pplip] - value; o] .
fplip] = pplipl - value; " = In ParFlow the eDSL is implemented via C macro definitions

» In the left example the eDSL abstracts from a three level for
oop (see left hand side box in the figure) ...

eDSL macro definition for BoxLoopIO

#define BoxLoopIO(i, j, k, ix, iy, iz,

{ nx, ny, nz, loop_body) . via the C macro definition BoxLooplO (see middle box).

fﬂﬁ “‘T_ iz; k < iz + nz; ke+) } = As a result BoxLooplO with the loop body of the for loop as an
or J = 1¥; J] < 1Y + LNIy;]J++ . . .
for (i = ix; i < ix + nx; i++) argument will be called (see figure on the right).
{
loop body;
}

embedded Domain Specific Language (eDSL) in ParFlow - Abstraction of CUDA/HIP calls

eDSL macro definition - sequential (host) = [he above shown example is also extendable to MPI calls,

#define BoxLoopIO(i, j, k, 1ix, iy, iz, . .
nx, ny, nz, loop body) memory allocation and offloading.

{ for (k = iz: Kk < iz + nz: ke+) eDSL macro definition - Kokkos (host & device / sequential, parallel) . During the last few years ParFlow’'s eDSL has been expanded
for (j = iy; J < iy + ny; j++) #define BoxLoopIO(i, j, k, ix, iy, iz, "kokkos to incorporate backends utilizing GPUs.
for (1 = 1x; 1 < 1X + nx; i++) nx, ny, nz, loop_body) .]
({ ‘ B « One backend with native CUDA support and one backend
loop body;
\ = e Taibds bedy = FoiioE SaErnlhE 4 Sk 3 dis &) incorporating Kokkos with CUDA and Kokkos with HIP to

{ achieve a high degree of performance portability.

i += ix; j += iy; k += iz;

eDSL macro definition - CUDA (device) | Hoophody; = A successful porting to Nvidia-GPUs was done in 2021 with
#define BoxLoopIO(i, j, k, ix, iy, iz, CUDA and Kokkos-CUDA [1]
(e B =y CRRELRO | I-v’.DPw.:Jli::yT}rpu_'ED n«.:,_ipuii:;y_z-;_if-:{ﬂ, 0, G}},{-I['-.J-::, ny, nz}}); « End of 2022 the porting to Kokkos-HIP was started in the
aut{;i:bf;b?iwc;n;]iih?,sténadiic:? } R e e e natESM project and was completed in the EoCoE-lll project.
—— « Several challenges occured during the natESM sprint (ROCm,
/* some code missing for grid & block sizes */ KOkkOS, machines)
i s = Solving the conflicts with internal Desul atomics and multiple
j | calls to finalize() made ParFlow running with Kokkos-HIP.

Scaling tests with ParFlow (CUDA /Kokkos) Scaling tests with ParFlow (HIP /Kokkos)

gle6 Singlc!a nnd!e r::n}n?p?ri:sr:::-r:w = 5 -Le6 Weak scaling =5 Ley T — o 282 Weak scaling -
—e— GPUs w/ CUDA | g _ 0 o o o| N =T e TR E [0
—¥— GPUs w/ Kokkos s paaal @ ’ Q [|| B s [- s
5*—+ GPUs w/ Kokkos (no RMM) i i i q}i /".T’. 25 5 _ 5 1—'— P ® 255 - = o :ifatizi performance : 355 — -4D£
E —=— CPUs only : E ..E_ ' E ..E 3.0 30 E -E- 3.0 E
Eg,_ .D. IH:elzatwe perfm:mancle o any 7:%_205 Eq - . . QOE Eg,s 25E EE.E I— B auﬂ
0 g | & v 5 o T o z
e 3 : : 15 £ g 15 £ Y 2.0 20 £ ¥ 2.0 £
L © —e— GPUs w/ CUDA © o © 5
S % = —e— GPUs w/ Kokkos E E 1s 15% E 15 20%
‘E 2 10 o 'E 2 —=— CPUs only 102 'E = ~E G o 2 o
7] v @ : ¢ o 1.0 100 1.0 @
o 2 o © Relative performance E o E E ek 10 >
: 2 E 1 > :T..; 0.5 3 % 0.5 +— 128 Epyc cores - %
0 i r } e | 0 0 el - s 0 = Iiﬂ? | - iﬂg | = a 0.0 1 = i ?Elatlve plerrnrman::e 0 =
107 108 El 50 100 150 200 250 0 50 100 150 200 250
Total number of cells Nodes ToRAl- MY a1 amie Nodes
= Above strong and weak scaling plots are showing the results of CUDA and = The performance (cells per second) is calculated as total number of cells
Kokkos-CUDA runs (see figure above; performed on JUWELS Booster (FZJ) (problem size) divided by the execution time for a given datapoint.
with NVIDIA A100 GPUs [1]) and Kokkos-HIP runs (see right figure; performed « The relative performance is calculated by dividing the execution time on CPU by
on LUMI (Finland), AMD MI250) the execution time on GPU
- - . *1 A4 % % * 8 . . L . .
» Mesh sizes (single node): 144*144*240 up to 1008*1008*240 (2.43 x 10°) mesh = Using Kokkos with CUDA and HIP led to a significant speed-up with only limited
points. costs of changing the code.

References

[1] Hokkanen, J., Kollet, S., Kraus, J., Herten, A., Hrywniak, M. and Pleiter, D.: Leveraging HPC accelerator architectures with modern techniques — hydrologic modeling on GPUs with ParFlow, Comp. Geosciences, Vol. 25, 1579 - 1590, https://link.springer.com /article/10.1007 /s10596-021-10051-4, 2021.
[2] natESM (national Earth System Modeling strategy project): https://www.nat-esm.de
[3] EoCoE-lll (Energy-oriented Centre of Excellence for Exascale HPC applications): https://www.eocoe.eu

