
Porting the hydrologic model ParFlow to
accelerator architectures using eDSL and Kokkos
Jörg Benke1, Muhammad Fahad2, Daniel Caviedes-Voullieme1,2, Andreas Herten1, Stefan Kollet2

1 Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, Jülich, Germany
2 Institut für Bio- und Geowissenschaften - Agrosphäre (IBG-3), Forschungszentrum Jülich GmbH, Jülich, Germany

Introduction and Background

ParFlow (https://github.com/parflow) is an open-source, modular, parallel watershed flow model which is written in
C. ParFlow includes fully-integrated overland flow, the ability to simulate complex topography, geology and
heterogeneity and coupled land-surface processes including the land-energy budget, biogeochemistry and snow (via
CLM). ParFlow solves the 3D Richards equation and the 2D kinematic/diffusive surface flow.

ParFlow has been abstracted early on with an so-called embedded Domain Specific Language (eDSL) approach
leading to a best-practice separation-of-concerns, which means the domain scientist/developer does not see for
example a single MPI call when using distributed memory parallelization in ParFlow. In the recent past, ParFlow’s
eDSL has been expanded to incorporate backends utilizing GPUs; one backend with native CUDA support and one
backend incorporating Kokkos-CUDA. During the natESM and EoCoE-III projects [2,3] Kokkos-HIP was also
incorporated to achieve a high degree of performance portability.

embedded Domain Specific Language (eDSL) in ParFlow - The general concept

ParFlow is using an embedded Domain Specific Language
(eDSL).

This approach results in a best-practice separation-of-concerns,
which means that the developer does not see for example
complex loops, allocation of memory or a single MPI call when
programming ParFlow.

In ParFlow the eDSL is implemented via C macro definitions

In the left example the eDSL abstracts from a three level for
loop (see left hand side box in the figure) ...

via the C macro definition BoxLoopIO (see middle box).

As a result BoxLoopIO with the loop body of the for loop as an
argument will be called (see figure on the right).

embedded Domain Specific Language (eDSL) in ParFlow - Abstraction of CUDA/HIP calls

The above shown example is also extendable to MPI calls,
memory allocation and offloading.

During the last few years ParFlow’s eDSL has been expanded
to incorporate backends utilizing GPUs.

One backend with native CUDA support and one backend
incorporating Kokkos with CUDA and Kokkos with HIP to
achieve a high degree of performance portability.

A successful porting to Nvidia-GPUs was done in 2021 with
CUDA and Kokkos-CUDA [1].

End of 2022 the porting to Kokkos-HIP was started in the
natESM project and was completed in the EoCoE-III project.

Several challenges occured during the natESM sprint (ROCm,
Kokkos, machines)

Solving the conflicts with internal Desul atomics and multiple
calls to finalize() made ParFlow running with Kokkos-HIP.

Scaling tests with ParFlow (CUDA/Kokkos)

Above strong and weak scaling plots are showing the results of CUDA and
Kokkos-CUDA runs (see figure above; performed on JUWELS Booster (FZJ)
with NVIDIA A100 GPUs [1]) and Kokkos-HIP runs (see right figure; performed
on LUMI (Finland), AMD MI250)

Mesh sizes (single node): 144*144*240 up to 1008*1008*240 (2.43 × 108) mesh
points.

Scaling tests with ParFlow (HIP/Kokkos)

The performance (cells per second) is calculated as total number of cells
(problem size) divided by the execution time for a given datapoint.

The relative performance is calculated by dividing the execution time on CPU by
the execution time on GPU

Using Kokkos with CUDA and HIP led to a significant speed-up with only limited
costs of changing the code.

References
[1] Hokkanen, J., Kollet, S., Kraus, J., Herten, A., Hrywniak, M. and Pleiter, D.: Leveraging HPC accelerator architectures with modern techniques — hydrologic modeling on GPUs with ParFlow, Comp. Geosciences, Vol. 25, 1579 - 1590, https://link.springer.com/article/10.1007/s10596-021-10051-4, 2021.

[2] natESM (national Earth System Modeling strategy project): https://www.nat-esm.de

[3] EoCoE-III (Energy-oriented Centre of Excellence for Exascale HPC applications): https://www.eocoe.eu


