

QUINCY Porting Guide

A Quick Guide to Porting QUINCY

Subroutines (queued tasks) to GPU

Sergey Sukov1

1 Forschungszentrum Jülich GmbH, Jülich, Germany

Contact: s.sukov@fz-juelich.de; info@nat-esm.de

Published on 07.01.2025 on https://www.nat-esm.de/services/accepted-sprints

1 Generating a reference data file

Using the CPU executable, create a simulation results file resCPU.nc (preferably a restart

file that contains the values of all variables). In case of sequential (one after another) porting of

tasks, it is advisable to compare the current data file with the previous one [cdo diffn resCPU.nc

prev_resCPU.nc]. This way, we can verify that adding a new task to the queue results in

noticeable deviations of variable values.

2 Building a local (within the portable subroutine) call tree and

marking “frozen” code branches

At this stage, statements

#ifdef _OPENACC

CALL finish(routine, 'Code block not ported to GPU, yet. Stop.')

#endif

are added to inactive code branches.

3 Simplifying the task: dividing the subroutine into code blocks

Sometimes it makes sense to first divide logically complex subroutines into code blocks,

which can then be ported independently of each other. Before and after such code blocks, CPU/GPU

data synchronization directives are added:

!$ACC UPDATE HOST(a(:), b(:), c(:))

CALL SUBROUTINE_S1(a, b, c)

!$ACC UPDATE DEVICE(a(:), b(:), c(:))

#ifdef _OPENACC

a(:) = -1000.0; b(:) = -2000.0; c(:) = -3000.0

#endif

!$ACC UPDATE HOST(c(:), d(:))

CALL SUBROUTINE_S2(c, d)

!$ACC UPDATE DEVICE(c(:), d(:))

#ifdef _OPENACC

c(:) = -8000.0; d(:) = -9000.0

#endif

The last (optional) statements fill the data arrays on the CPU with "garbage". This helps to avoid

situations where part of the calculations are mistakenly left on the host.

mailto:s.sukov@fz-juelich.de
mailto:info@nat-esm.de
https://www.nat-esm.de/services/accepted-sprints

After subroutine decomposition into code blocks, you need to compile, build and run the

GPU executable. The obtained simulation results (restGPU.nc) should match restCPU.nc.

4 Transforming the coding style to a form suitable for the GPU

porting

Typically, this involves replacing calls to structure members with direct pointers and

transforming operations on array slices into element-based loops. For example, the statement
data%arrayA(:) = data%arrayB(:)

will be expanded into a code block
ptrA => data%arrayA(:); ptrB => data%arrayB(:)

DO ic = 1, nc

ptrA(ic) = ptrB(ic)

ENDDO

Here to check the correctness of the new code, you need to compile and run the CPU

executable.

5 Offloading computations to GPU

To offload computations to the GPU, either a combination of the

!$ACC PARALLEL + !$ACC LOOP directives or a combined !$ACC PARALLEL LOOP

directive is used:

ptrA => data%arrayA(:); ptrB => data%arrayB(:)

!$ACC PARALLEL LOOP GANG VECTOR DEFAULT(PRESENT)

DO ic = 1, nc

ptrA(ic) = ptrB(ic)

ENDDO

!$ACC END PARALLEL LOOP

It is assumed that the memory for the data arrays required for the computations has been

allocated on the GPU and all variables have been updated to the correct values. Therefore, the

DEFAULT(PRESENT) clause is mandatory in the PARALLEL and PARALLEL LOOP

directives. If any data is missing on the device, the program will terminate with an error message:

0: FATAL ERROR: data in PRESENT clause was not found on device 1:

 name=l_growing_season_cl host:0x15496d3b93b0

0: file:/externals/jsbach/src/q_radiation/mo_q_rad_interface.f90

 update_time_average_q_radiation line:357

This usually means that the memory for local data arrays (that are used only within the subroutine

in question) has not been allocated on the GPU. In this case, the DATA directive is added to

allocate/deallocate temporary memory:

SUBROUTINE subroutineName(arg1, arg2)

...

REAL(8), ALLOCATABLE, DIMENSION(:,:) :: tmp

...

ALLOCATE(tmp(nc, ncanopy))

!$ACC DATA CREATE(tmp(:,:))

...

!$ACC PARALLEL LOOP GANG VECTOR COLLAPSE(2) DEFAULT(PRESENT)

DO icanopy = 1, ncanopy

DO ic = 1, nc

...

! Some offloaded computations using tmp

...

ENDDO

ENDDO

!ACC END PARALLEL LOOP

...

!$ACC END DATA

DEALLOCATE(tmp)

...

END SUBROUTINE subroutineName

6 Adding OpenACC directives to subroutine definitions

According to OpenACC rules, the !$ACC ROUTINE directive must be added to prototypes

and/or definitions of procedures (subroutines and functions) that are called from GPU-ported

compute regions. This directive tells the compiler to compile a procedure for the device and gives

the execution context for calls to the procedure. In the case of ICON/JSBACH/QUINCY all

procedures called from GPU compute regions are executed sequentially by the thread making the

call and are specified using !$ACC ROUTINE SEQ. That is, the procedure is called in an element-

based loop and processes only one data element:

!$ACC PARALLEL LOOP GANG VECTOR DEFAULT(PRESENT)

DO ic = 1, nc

CALL SUBROUTINE_S(a(ic), b(ic))

ENDDO

!$ACC END PARALLEL LOOP

...

...

SUBROUTINE SUBROUTINE_S(a, b)

!$ACC ROUTINE SEQ

...

END SUBROUTINE SUBROUTINE_S

If the subroutine's code and the offloaded loop within which it is called are in the same

Fortran source file or module, the compiler may detect and specify the subroutine's type implicitly

(although this is incorrect). Otherwise, the code compilation will be interrupted with an error

message:

FC externals/jsbach/src/q_vegetation/mo_q_veg_update_pools.pp-jsb.o

NVFORTRAN-S-1061-Procedures called in a compute region must have acc routine

information - calc_mixing_ratio_c14c

(externals/jsbach/src/q_vegetation/mo_q_veg_update_pools.pp-jsb.f90: 742

7 Allocating memory and updating global variable values on

the GPU

If global variable values are used within ported computational regions (or sequential

subroutines/functions called from offloaded regions), memory for them must be explicitly allocated

on the GPU for the program duration time. Otherwise, compilation will fail with the error message:

NVFORTRAN-W-1054-Module variables used in acc routine need to be in acc declare

create() - dwv2co2_turb

(externals/jsbach/src/q_assimilation/mo_q_assimi_process.pp-jsb.f90: 787)

OpenACC directives !$ACC DECLARE and !$ACC UPDATE are used to allocate memory

for global variables and update their values. In the case where the initialization of the variable

value occurs at the same point with its declaration, only the directive !$ACC DECLARE is used:

MODULE mo_q_assimi_constants

...

IMPLICIT NONE

PUBLIC

...

REAL(wp), SAVE :: Dwv2co2_air = Dwv / Dco2

...

!$ACC DECLARE COPYIN(Dwv2co2_air)

END MODULE mo_q_assimi_constants

If a special subroutine is called to set the value of a variable, then the !$ACC DECLARE directive

is added at the variable declaration point, and the !$ACC UPDATE directive is used inside the

data initialization subroutine:

MODULE mo_q_assimi_parameters

...

REAL(wp), SAVE :: discr_ps_a_C13 = def_parameters

...

!$ACC DECLARE CREATE(discr_ps_a_C13)

CONTAINS

...

SUBROUTINE init_q_assimi_parameters

...

discr_ps_a_C13 = 4.4_wp

...

!$ACC UPDATE DEVICE(discr_ps_a_C13)

END SUBROUTINE init_q_assimi_parameters

...

END MODULE mo_q_assimi_parameters

Note: In the last example, at the same time as the variable discr_ps_a_C13 is declared, it is

assigned the value def_parameters. Therefore, from a formal point of view, the

!$ACC DECLARE COPYIN(discr_ps_a_C13) directive should be used here. However, the

def_parameters parameter is declared as

REAL(wp), PARAMETER :: def_parameters = -9999.0_wp !< the default value of model

parameters (not constants) prior to their init

When the variable discr_ps_a_C13 is declared, it is assigned some dummy value, which is then

changed during the call to the init_q_assimi_parameters subroutine. That is, copying the initial

value is not practical and the !$ACC DECLARE CREATE(discr_ps_a_C13) directive can be

used.

8 Note A: Using the KERNELS directive

The KERNELS directive is effective (reasonable) to use in two cases:

• Porting simple array element value initialization statements.

• Preliminarily code porting when the main goal is to quickly offload computations to the GPU

without regard to low performance.

Otherwise, there is a high probability that the compiler will detect non-existent data dependencies

and force the code block to be executed sequentially. For such serialized code blocks, the compiler

typically gives the following output:

334, Generating default present(ptr5d(i_part,i_elem,ics:ice,:,iblk),

 ptr3d(ics:ice,:ptr3d$sd494+ptr5d$sd-1,iblk))

335, Complex loop carried dependence of ptr3d,ptr5d prevents parallelization

 Accelerator serial kernel generated

 Generating NVIDIA GPU code

335, !$acc loop seq

9 Note B: Asynchronous kernels execution

The ICON programming standard requires the developer to add the ASYNC(1) clause to

loop parallelization and data transfer directives. Executing compute regions asynchronously using

only one stream provides a small performance benefit by reducing the overhead of launching

kernels. However, this option works correctly only if there are no dependencies between

calculations on the CPU and GPU. Such implicit dependencies can arise, for example, when just

one CPU variable is used to select multiple offloaded code regions. Finding asynchronous execution

bugs is a non-trivial and time-consuming task. Therefore, the ASYNC clause is not recommended

to be used during the preliminarily porting stage, especially when the CPU source code is still under

development.

10 Note C: CPU vs GPU calculation results comparison

Based on the experiments performed, it can be said that the calculation results (restart

files) created by one executable should be completely identical regardless of the MPI process

number and the block size (nproma). For files generated by different executables (Nvidia

CPU/GPU executables or CPU executables build by different compilers), three types of variable

value deviations can be considered as correct program execution:

• minor maxima of absolute (cdo diffn ⇒ Max_Absdiff) and relative

(cdo diffn ⇒ Max_Reldiff) differences:
Max_Absdiff Max_Reldiff : Parameter name

 1.3399e-09 6.2395e-12 : a2l_drag_srf_box

• minor absolute difference and arbitrary relative difference:

Max_Absdiff Max_Reldiff : Parameter name

 5.2404e-16 0.99882 : spq_evaporation_veg

• minor relative difference for large absolute values of variables:

Max_Absdiff Max_Reldiff : Parameter name

 0.0013580 1.6476e-13 : spq_temp_srf_eff_4_pft09

