
Kerstin Hartung, Bastian Kern (DLR-PA)

Wilton Loch1, Astrid Kerkweg2, Patrick Jöckel3 (1: DKRZ, 2: FZJ IEK-8, 3: DLR)

MESSy as a ComIn plugin

ICON-ComIn-MESSy, natESM workshop, 17.07.2024

What is ICON/MESSy?

ICON-ComIn-MESSy, natESM workshop, 17.07.2024

ICON

(icon/icon-nwp)

MESSy BMIL

SM SM SM

Current status

Why do we need ComIn?
And why is MESSy not obsolete?

ICON-ComIn-MESSy, natESM workshop, 17.07.2024

ICON

(seamless /

consolidated)

ComIn

ComIn

MESSy BMIL

SM SM SM

dynamic load

& callback

access to

ICON data

ICON

(icon/icon-nwp)

MESSy BMIL

SM SM SM

Current status
Goal: reduced effort to keep up-

to-date with ICON developments

natESM sprint: Couple MESSy to ICON via the ICON
Community Interface (ComIn)

• open call for proposals from model-development groups across Germany

• sprints are focused on technical objectives, flexible, tailored to research goals and timelines

• up to 6 months, in-depth partnership between applicant and Research Software Engineers (RSE)

ICON-ComIn-MESSy, natESM workshop, 17.07.2024

• 07/2023 – 01/2024

• implement ComIn in MESSy,

advance towards a working setup

• co-existence of original and new

implementation during development

• document steps and challenges for other

plugins

Implementation approach

• iterative implementation updates

• testing functionality of intermediate steps

• workarounds/updates if either MESSy or ComIn do not support functionality at the

moment

• direct feedback to ComIn development

• shaping future ComIn version: short term and long term development goals

• ComIn is a lightweight interface

• ComIn provides grid and decomposition information, variable meta-data, …

• ComIn provides a MPI communicator but no communication patterns

ICON-ComIn-MESSy, natESM workshop, 17.07.2024

Recipe to prepare software as ComIn plugin

Preparation:

Gather potential issues, for example in the data fields the plugin is

expecting, the order of plugin routines relative to the ICON control flow.

In MESSy, for example:

• workaround to not require hybrid vertical coordinate from ICON

• MPI functionality, previously accessed through ICON

Note: some points of the recipe are only relevant if you have already integrated your

code to ICON.

ICON-ComIn-MESSy, natESM workshop, 17.07.2024

Recipe to prepare software as ComIn plugin

1. Prepare code as shared library (unless using Python, where everything is

easier).

ICON-ComIn-MESSy, natESM workshop, 17.07.2024

Results from the natESM sprint

ICON-ComIn-MESSy, natESM workshop, 17.07.2024

Diagram by Wilton Loch

Recipe to prepare software as ComIn plugin

1. Prepare code as shared library (unless using Python, where everything is easier).

2. Decide which entry points will be accessed and which data need to be added to

ICON (e.g. regular data fields and tracers). From this point onwards descriptive

data can be accessed. This already defines the content of the primary

constructor.

ICON-ComIn-MESSy, natESM workshop, 17.07.2024

In MESSy, so far, only the entry points of the initialization phase are considered.

Results from the natESM sprint

ICON-ComIn-MESSy, natESM workshop, 17.07.2024

SUBROUTINE messy_comin_setup()

CALL init_icon_get_mpi()

CALL comin_callback_register(EP_SECONDARY_CONSTRUCTOR,

messy_comin_constructor, ierr)

CALL comin_callback_register(EP_ATM_INIT_FINALIZE,

messy_comin_atm_finalization, ierr)

CALL messy_setup()

CALL messy_initialize

CALL messy_new_tracer

CALL messy_request_tracers

END SUBROUTINE messy_comin_setup

some workarounds

initialize MESSy and MESSy submodels

gather info on new tracers, use descriptive data

prepare MESSy tracer metadata and

call comin_var_request_add

register callbacks

Recipe to prepare software as ComIn plugin

1. Prepare code as shared library (unless using Python, where everything is easier).

2. Decide which entry points will be accessed and which data need to be added to

ICON (mainly tracers). From this point onwards descriptive data can be accessed.

This already defines the content of the primary constructor.

3. Decide which ICON data the plugin should access. In case of a larger/ more

complex plugin: decide how to associate existing data structures with those

provided by ComIn. This is a main component of the secondary constructor.

ICON-ComIn-MESSy, natESM workshop, 17.07.2024

Results from the natESM sprint

ICON-ComIn-MESSy, natESM workshop, 17.07.2024

SUBROUTINE messy_comin_constructor()

CALL messy_get_tracer_metadata_comin

CALL messy_init_memory

END SUBROUTINE messy_comin_constructor

SUBROUTINE messy_comin_atm_finalization()

CALL messy_init_coupling

CALL messy_read_restart

CALL messy_init_tracer

END SUBROUTINE messy_comin_atm_finalization

receive tracer metadata

incomplete because MPI not fully set up

receive pointers to ICON variables and

tracers, initialize submodel memory

read restart and initialize tracer fields

Recipe to prepare software as ComIn plugin

1. Prepare code as shared library (unless using Python, where everything is easier).

2. Decide which entry points will be accessed and which data need to be added to

ICON (mainly tracers). From this point onwards descriptive data can be accessed.

This already defines the content of the primary constructor.

3. Decide which ICON data the plugin should access. In case of a larger/ more

complex plugin: decide how to associate existing data structures with those

provided by ComIn. This is a main component of the secondary constructor.

4. Associate routines registered to entry points with plugin routines.

5. Update ICON runsript (comin_nml section) to apply plugin (prepared as shared

library).

ICON-ComIn-MESSy, natESM workshop, 17.07.2024

Results from the natESM sprint

→Simplified interaction with ICON AND MESSy is not obsolete!

• flexible addition of variable fields and tracers

• data fields from other plugins can also easily be accessed, e.g. YAC for I/O

• some auxiliary routines (and descriptive data) named more intuitively than in ICON

ICON-ComIn-MESSy, natESM workshop, 17.07.2024

Valuable feedback from first complex plugin for (early) ComIn development, e.g.:

• expanded metadata and access/set routines

• all cell centre fields shared via ComIn

• convenience function for time steps

• some additional descriptive data

Outlook and open questions

ICON-ComIn-MESSy, natESM workshop, 17.07.2024

evaluation of implementation

using ComIn during time loop

• add calls to current entry points in MESSy

• some workarounds, e.g. for access to currently

(sub)routine-local fields, masking regions for

parameterizations

Prill et al., ICON tutorial

final steps of initialization

• set up MPI with YAXT

recommendations for community

2nd natESM sprint on MESSy-ComIn (queued)

Impressum

Topic: MESSy as a ComIn plugin

Date: 2024-07-17

Author: Kerstin Hartung and Bastian Kern

Institute: DLR-PA-ESM

Image credits: All images „DLR (CC BY-NC-ND 3.0)“ unless otherwise stated

ICON-ComIn-MESSy, natESM workshop, 17.07.2024

