
1

Deeper dive into GPUs, debugging and
profiling with NVIDIA tools
Dr. Dmitry Alexeev, NVIDIA

07/2024

2

Why the GPUs are the way they are?

3

First the CPUs

• A CPU (core) wants to execute a stream of instructions as fast as possible
(think IPC)

• Every instruction takes a few cycles, 5-50-500 or more

• How can we reduce the latency?

• Pipelining!

• But what if pipelining is not possible?

• Instructions with too much latency (memory accesses) => cache

• Data dependency => out-of-order execution

• Branching => speculative execution and branch predictions

• etc. etc. etc

• Now the CPU core has a very large frontend, and can execute
instructions very very fast

• What else do we need?

4

Now the GPUs

• Can we somehow save transistors on the frontend and use them instead
for the backend?

• Yes! But only for certain tasks

• The GPU assumes that the running task has a lot of data parallelism, i.e.,
very many items that can be processed almost independently

• But if we just multiply a CPU core and make each one process its own
elements, we’ll still need a wide frontend to reduce latency

• Instead, we’ll use oversubscription

5

Now the GPUs
Oversubscription

• The idea is that we additionally assume that there are much more independent items than the hardware execution units

• Therefore, the execution units can switch between the different items in case of stalls

• Fast switching means that HW needs to store the state of each item it works on in fast memory: registers and cache

• These resources are limited, hence occupancy

A

Time

B

C

D

SM

Warps

Execution

Stall

6

Now the GPUs
SMs

• Streaming multiprocessor is like a “core” of the GPU, and it implements the idea of
oversubscription

• No OOO execution or branch prediction, frontend is very simple and predictable

• To save more frontend space: 1 instruction per 32 data elements, or threads. This is what’s
called a warp and the concept is similar to CPU SIMD instructions, however, more flexible

• We need quite a few registers and cache, or shared memory, per each backend execution
unit to enable fast context switching

• Added benefit: warps that reside on the same SM are physically close to each other and
can synchronize/communicate quickly. This is exposed in CUDA as thread blocks

• Modern GPUs have more complexity with SM clusters, tensor cores connected to multiple
SMs, separate instruction pointer per thread, etc. I only touched the basics!

7

Shared/L1

Registers

Now the GPUs
Memory hierarchy, because DRAM latency and bandwidth are still not great

• Per-thread registers.

• Lowest possible latency.

• Per-thread local memory.

• Private storage.

• Backed up by global memory (hence the color).

• Per-block shared memory.

• Visible by all threads in a block.

• Can be used to exchange data between threads in a
thread block.

• Very fast access.

• Can serve as L1 cache.

• Global memory.

• Visible by all threads in a grid.

• Slowest access.

• Augmented by L2 shared across all SMs and per-SM L1

L2

DRAM

Hardware CUDA/Software

Thread

Thread Block

Thread Block

Thread Block

Grid

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block

Thread Block

Registers

Shared
Memory

Global Memory

SM

Shared/L1

Registers

Local Memory

8

How to program the GPUs with OpenACC?

9

OpenACC tips and tricks

• There is no silver bullet! All codes, algorithms and patterns are different

• In many cases GPU optimizations may help CPU performance as well

• Data layout is the king, data access is the queen (or vise versa, both are equally important and need to match)

• Vector lanes (threads in CUDA) should read contiguous chunks of data. This is called coalesced access

!$acc parallel loop gang vector
do iCell=cellSolveStart,cellSolveEnd

!$acc loop seq
do k=2,nVertLevels

rw_p(k,iCell) = (rw_p(k,iCell)-a_tri(k,iCell)* &
rw_p(k-1,iCell))*alpha_tri(k,iCell)

end do

!$acc loop seq
do k=nVertLevels,1,-1

rw_p(k,iCell) = rw_p(k,iCell) - gamma_tri(k,iCell)*rw_p(k+1,iCell)
end do

end do
!$acc end parallel

!$acc parallel loop gang vector
do iCell=cellSolveStart,cellSolveEnd

!$acc loop seq
do k=2,nVertLevels

rw_p(iCell,k) = (rw_p(iCell,k)-a_tri(iCell,k)* &
rw_p(iCell,k-1))*alpha_tri(iCell,k)

end do

!$acc loop seq
do k=nVertLevels,1,-1

rw_p(iCell,k) = rw_p(iCell,k) - gamma_tri(iCell,k)*rw_p(iCell,k+1)
end do

end do
!$acc end parallel

10x faster

10

OpenACC tips and tricks

• Remember oversubscription: we want to expose as much parallelism as possible. Total number of loop iterations, parallelized with gang
and vector clauses, should ideally be higher than 100’000 or so.

• Data movements to and from the GPU could be costly and it’s better to keep all the data and all the computations on the GPU whenever
possible

• However, partially ported codes always have some copies, and typically you should only remove them once the whole code path of
interest is on the GPU

• Nvidia HPC compiler has an info flag: -Minfo=accel or -Minfo=all. This output can be helpful: tells you which loops are parallelized, and
which are not, if private variables end up in registers or shared memory, etc.

• You can call functions and subroutines from ACC parallel regions. If such functions are in the same source file, performance should be
good. If they are in another source file, consider using inlining and inline libraries: https://docs.nvidia.com/hpc-sdk/compilers/hpc-
compilers-user-guide/index.html#fn-inline-use

• However, local arrays in device functions are (currently) very inefficient!

do i=1, N
result(i) = process(input(i))

end do

function process(input)
real :: input
real :: process
real :: temporary(global_size)

...
end function

https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html
https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html

11

OpenACC tips and tricks
Loop fusion

!$ACC PARALLEL DEFAULT(NONE) ASYNC(1)
!$ACC LOOP GANG VECTOR
DO jk = 1, kbdim
zwindspeed10m_lnd(jk) = 0.8_wp * zwindspeed_lnd(jk)

END DO
 !$ACC END PARALLEL

 !$ACC PARALLEL DEFAULT(NONE) ASYNC(1)
!$ACC LOOP GANG VECTOR
DO jl = jcs,kproma
IF (rpds(jl) > 0._wp) THEN
fract_par_diffuse(jl) = rpds_dif(jl) / rpds(jl)

ELSE
fract_par_diffuse(jl) = 0._wp

END IF
END DO

 !$ACC END PARALLEL

!$ACC PARALLEL DEFAULT(NONE) ASYNC(1)
!$ACC LOOP GANG(static:1) VECTOR
DO jk = 1, kbdim
zwindspeed10m_lnd(jk) = 0.8_wp * zwindspeed_lnd(jk)

END DO

!$ACC LOOP GANG(static:1) VECTOR
DO jl = jcs,kproma
IF (rpds(jl) > 0._wp) THEN
fract_par_diffuse(jl) = rpds_dif(jl) / rpds(jl)

ELSE
fract_par_diffuse(jl) = 0._wp

END IF
END DO

 !$ACC END PARALLEL

• Avoid GPU kernel launch latency

12

OpenACC tips and tricks
Loop fusion

• Promote data reuse between the loops

!$ACC PARALLEL DEFAULT(NONE) ASYNC(1) IF(i_am_accel_node .AND. acc_on)
 !$ACC LOOP GANG(static:1) VECTOR COLLAPSE(2)

DO jk = 1, nlev
DO je = i_startidx, i_endidx

nabv_tang = ...
nabv_norm = ...
z_nabla4_e2(je,jk) = 4._wp * (&

(nabv_norm - 2._wp*z_nabla2_e(je,jk,jb)) &
*p_patch%edges%inv_vert_vert_length(je,jb)**2 + &
(nabv_tang - 2._wp*z_nabla2_e(je,jk,jb)) &
*p_patch%edges%inv_primal_edge_length(je,jb)**2)

ENDDO
ENDDO

 !$ACC LOOP GANG(static:1) VECTOR COLLAPSE(2)
DO jk = 1, nlev

DO je = i_startidx, i_endidx
p_nh_prog%vn(je,jk,jb) = p_nh_prog%vn(je,jk,jb) + &

p_patch%edges%area_edge(je,jb) * &
(MAX(nudgezone_diff*p_int%nudgecoeff_e(je,jb),REAL(kh_smag_e(je,jk,jb),wp))* &
z_nabla2_e(je,jk,jb) - diff_multfac_vn(jk) * z_nabla4_e2(je,jk) * &
p_patch%edges%area_edge(je,jb))

ENDDO
ENDDO

 !$ACC END PARALLEL

!$ACC PARALLEL DEFAULT(NONE) ASYNC(1)
 !$ACC LOOP GANG VECTOR COLLAPSE(2)

DO jk = 1, nlev
DO je = i_startidx, i_endidx

nabv_tang = ...
nabv_norm = ...
z_nabla4_e2(je,jk) = 4._wp * (&

(nabv_norm - 2._wp*z_nabla2_e(je,jk,jb)) &
*p_patch%edges%inv_vert_vert_length(je,jb)**2 + &
(nabv_tang - 2._wp*z_nabla2_e(je,jk,jb)) &
*p_patch%edges%inv_primal_edge_length(je,jb)**2)

ENDDO
ENDDO

 !$ACC END PARALLEL
 !$ACC PARALLEL DEFAULT(NONE) ASYNC(1)
 !$ACC LOOP GANG VECTOR COLLAPSE(2)

DO jk = 1, nlev
DO je = i_startidx, i_endidx

p_nh_prog%vn(je,jk,jb) = p_nh_prog%vn(je,jk,jb) + &
p_patch%edges%area_edge(je,jb) * &
(MAX(nudgezone_diff*p_int%nudgecoeff_e(je,jb),REAL(kh_smag_e(je,jk,jb),wp))* &
z_nabla2_e(je,jk,jb) - diff_multfac_vn(jk) * z_nabla4_e2(je,jk) * &
p_patch%edges%area_edge(je,jb))

ENDDO
END

 !$ACC END PARALLEL

13

OpenACC tips and tricks

• Many possibilities to improve your performance even more

• Using TILE instead of collapse to group the iterations in a different way and improve caching

• Using STATIC:n for the GANG to make it process multiple loop iterations and increase ILP and caching

• CACHE directive may be useful, especially in conjunction with gang-private arrays and -gpu=safecache flag to
make sure data ends up in fast shared memory

• -gpu=maxregcount:n would limit the number of registers of the GPU kernels and would improve occupancy

• CUDA graphs could be applied for some parts of the code to reduce latency between the kernels

• Atomic operations are quite efficient, but floating-point atomics break reproducibility (you may or may not
really need it though)

Advanced options

14

Compiling the GPU code
Useful compiler flags

• Try different optimization levels like -O2, -O3, -O4. Some kernels may be faster or slower with higher optimization

• -Mstack_arrays would place all the automatic arrays on stack. You have to increase stack size limit before running, e.g.: ulimit
–s unlimited

• -nvmalloc would use jemalloc library. Very helpful on Arm CPUs, might be helpful on x86 for the codes doing many allocation
and deallocations

15

NVIDIA HPC SDK
Available at developer.nvidia.com/hpc-sdk, on NGC, via Spack, preinstalled at CSCS

Develop for the NVIDIA Platform: GPU, CPU and Interconnect

Libraries | Accelerated C++ and Fortran | Directives | CUDA

x86_64 | Arm

6 Releases Per Year | Freely Available

Compilers

nvcc nvc

nvc++

nvfortran

Programming
Models

Standard C++ & Fortran

OpenACC & OpenMP

CUDA

Core
Libraries

libcu++

Thrust

CUB

Math
Libraries

cuBLAS cuTENSOR

cuSPARSE cuSOLVER

cuFFT cuRAND

Communication
Libraries

HPC-X

NVSHMEM

NCCL

DEVELOPMENT

Profilers

Nsight

Systems

Compute

Debugger

cuda-gdb

Host

Device

ANALYSIS

SHARP HCOLL

UCX SHMEM

MPI

16

How to debug and profile the GPUs?

17

Debugging the GPU code
General considerations

• You can use print in the device code. This is all you need

• Honestly, print is really valuable when used properly:

• Each thread can do a print. To avoid overwhelming output, only print the data from a few threads (use if conditions)

• Keep in mind that the order of printed lines is not specified, especially when the line come from different thread blocks. Always add
an ID that can correlate work with its output

• print is slow and it may affect the execution flow. This may mask or exacerbate synchronization bugs

• compute-sanitizer is ideal to track illegal and uninitialized accesses and find race conditions. Similar to valgrind for the CPU.
Compiling the code without OpenACC and with –Mbounds flag can catch the same errors, but not always

• cuda-gdb is helpful, especially when you know that a particular kernel is faulty and when you can run your application with a
single rank (i.e., no MPI parallelization)

18

Debugging the GPU code
Environment variables

• NVCOMPILER_ACC_SYNCHRONOUS=1: make all the GPU work synchronous with the host despite ASYNC clauses. Useful
when synchronization bug and race conditions are suspected

• NVCOMPILER_ACC_NOTIFY=N where N is binary combination of flags (use 31 for all the info):

• 1: prints GPU kernel launches (parallel or kernels clauses)

• 2: prints data transfers

• 4: prints exit/entry of a data region

• 8: prints info about wait clauses and synchronization

• 16: prints allocations and deallocations

• NVCOMPILER_ACC_DEBUG=1: similar to NOTIFY=31, but more information. Useful to track memory issues, like when CPU
memory is freed without freeing GPU memory

• NV_TERM=trace: if compiled with –traceback -gopt flags, will print backtrace on segmentation violations

19

Debugging the GPU code
PCAST

• Nvidia compiler can compare the results, computed with OpenACC on the GPU with the CPU while running

• This is called PCAST and can be used in a manual or automatic mode

• Automatic: add –gpu=autocompare flag and run

• For more details, see https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html#pcast

• Automatic approach works well for small-ish and partially ported codes, may not be that great for large fully ported apps like
the full ICON

• To bring CPU and GPU computations closer together, you can turn off FMA in both: -Mnofma and add –gpu=math_uniform
flag to the GPU compilation

https://docs.nvidia.com/hpc-sdk/compilers/hpc-compilers-user-guide/index.html

20

Profiling the GPUs

• There are two tools available: Nsight Systems and Nsight Compute

• Nsight Systems shows you an overview of the program as whole. It has a timeline with kernels running, API calls, CPU
samples, etc. etc. Always start with Nsight Systems

• Nsight Compute is designed to help you optimize individual kernels. Can be a bit overwhelming, so go through On-Demand
tutorials and demos

• What I find very important is to check kernel memory traffic and FLOPs against expectations, probably roofline analysis

• Then, warp stall reasons and occupancy calculator

• And moreover, check the most sampled instructions in the Source tab

• Both tools are available in HPC SDK are require no special compilation. Reports can be viewed as text on the target machine
or saved to a file. The file can be nicely visualized on your own laptop or desktop

• Nsight Systems example command: nsys profile -t openacc -o my_report ./app

• Nsight Compute example command: ncu --set full --import-source -o my_report ./app

• Plenty of kernel filtering options, check the docs!

21

Profiling the GPUs
NVTX

• You can manually annotate some parts of the code with simple markers which will show up in the Nsight Systems report (will
see it later)

• This is called NVTX ranges: https://docs.nvidia.com/nvtx/index.html

• Easy basic usage in Fortran:

! main.f90

use nvtx

...

call nvtxStartRange(name)
call do_stuff(...)
call nvtxEndRange()

Makefile

Compilation doesn’t change
%.o: %.f90

$(FC) -o $@ -c $(FCFLAGS) $<

Linking requires an extra flag
app: $(object_files)

$(LD) -o $@ -c $(LDFLAGS) -lnvhpcwrapnvtx $^

https://docs.nvidia.com/nvtx/index.html

22

The Tools
GPU tools are good, use them!

•My main point: the tools are so easy to use, give them a try! Do not be afraid of complexity, the
workflow is actually not complex at all

•Some of the tool reports could be hard to interpret, but it’s still much better that no reports at all

23

Nsight Systems example

•Let’s have a quick look at some profiles

24

ICON automated performance analysis

• Nsight Compute can be used to extract
bandwidth achieved by each kernel

• Required to perform detailed analysis of kernels
bottlenecks

• Can identify kernels that yield low memory
throughput or low overall GPU load

• Analysis can be easily automated with simple
Python scripts Kernel Duration, ms Bandwidth, GB/s

adding_1017_gpu 4.319616 1069.032674

lw_solver_noscat_136_gpu 3.002656 1028.267723

o3_pl2ml_219_gpu 2.947744 21.056265

inc_2stream_by_2stream_bybnd_576_gpu 2.325728 1041.890441

sw_two_stream_838_gpu 2.178112 1247.553819

lw_transport_noscat_576_gpu 1.826496 1328.899786

gas_optical_depths_major_339_gpu 1.788000 501.779672

inc_1scalar_by_1scalar_bybnd_456_gpu 1.771296 436.706152

compute_planck_source_578_gpu 1.716992 274.720473

sw_source_2str_942_gpu 1.714656 1253.359748

This kernel needs
to improve

25

Extra resources

• OpenACC standard, actually very accessible: https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.3-
final.pdf

• Nvidia on-demand: https://www.nvidia.com/en-us/on-demand/

• GTC recordings: https://www.nvidia.com/gtc/session-catalog/?regcode=no-ncid&ncid=no-ncid&search=#/

• https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31816/

• https://resources.nvidia.com/en-us-summer-of-learning-for-students/gtcspring22-s41496?ncid=no-ncid

• https://www.nvidia.com/en-us/on-demand/session/gtc24-s62191/?playlistId=playList-d59c3dc3-9e5a-404d-8725-4b567f4dfe77

• https://www.nvidia.com/en-us/on-demand/session/gtcspring23-s51120/

• https://www.nvidia.com/en-us/on-demand/session/gtcspring23-s51772/

• https://www.nvidia.com/en-us/on-demand/session/gtc24-dlit61667/

• Be careful when looking at old stuff like GPU Gems or 10 yr old stackoverflow answers. A lot has changed in CUDA platform and a lot
more is possible now

• The best way to learn is to try, so get your hands dirty!

https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.3-final.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.3-final.pdf
https://www.nvidia.com/en-us/on-demand/
https://www.nvidia.com/gtc/session-catalog/?regcode=no-ncid&ncid=no-ncid&search=
https://www.nvidia.com/en-us/on-demand/session/gtcspring21-s31816/
https://resources.nvidia.com/en-us-summer-of-learning-for-students/gtcspring22-s41496?ncid=no-ncid
https://www.nvidia.com/en-us/on-demand/session/gtc24-s62191/?playlistId=playList-d59c3dc3-9e5a-404d-8725-4b567f4dfe77
https://www.nvidia.com/en-us/on-demand/session/gtcspring23-s51120/
https://www.nvidia.com/en-us/on-demand/session/gtcspring23-s51772/
https://www.nvidia.com/en-us/on-demand/session/gtc24-dlit61667/

26

Hands on session

27

Hands on session

• The code is supposed to solve a system with conjugate gradient method, but it has a few bugs and a few
optimization opportunities.

• You’ll need to debug it, then profile with Nsight System and try to speed it up

• Try to use some tools/environment variables rather than just staring at the code

• Get Nsight Systems GUI onto your laptop: https://developer.nvidia.com/nsight-systems/get-started

https://developer.nvidia.com/nsight-systems/get-started

28

	Slide 1: Deeper dive into GPUs, debugging and profiling with NVIDIA tools
	Slide 2
	Slide 3: First the CPUs
	Slide 4: Now the GPUs
	Slide 5: Now the GPUs
	Slide 6: Now the GPUs
	Slide 7: Now the GPUs
	Slide 8
	Slide 9: OpenACC tips and tricks
	Slide 10: OpenACC tips and tricks
	Slide 11: OpenACC tips and tricks
	Slide 12: OpenACC tips and tricks
	Slide 13: OpenACC tips and tricks
	Slide 14: Compiling the GPU code
	Slide 15: NVIDIA HPC SDK
	Slide 16
	Slide 17: Debugging the GPU code
	Slide 18: Debugging the GPU code
	Slide 19: Debugging the GPU code
	Slide 20: Profiling the GPUs
	Slide 21: Profiling the GPUs
	Slide 22: The Tools
	Slide 23: Nsight Systems example
	Slide 24: ICON automated performance analysis
	Slide 25: Extra resources
	Slide 26
	Slide 27: Hands on session
	Slide 28

