
Hands-On Session 2
Harald Braun, Charles Radeke

1

 | GPU-Porting Workshop CC-BY 4.0

https://workshop.gitlab-pages.dkrz.de/gpu-openacc-intro/index.html
https://creativecommons.org/licenses/by/4.0/
https://workshop.gitlab-pages.dkrz.de/gpu-openacc-intro/index.html
https://creativecommons.org/licenses/by/4.0/

Goal of this session
• Adjust OpenACC directives in the example codes

• Get a first impression on speed and correctness of different approaches

3

 | GPU-Porting Workshop CC-BY 4.0

https://workshop.gitlab-pages.dkrz.de/gpu-openacc-intro/index.html
https://creativecommons.org/licenses/by/4.0/
https://workshop.gitlab-pages.dkrz.de/gpu-openacc-intro/index.html
https://creativecommons.org/licenses/by/4.0/

Tasks (1/4)
Take the example program from the previous hands-on. Investigate the
following effects on the matmul_naive() subroutine (if you haven’t done so
already):

1. What happens if if(acc) is removed from !$acc parallel loop if(acc)?

2. What happens if you replace the parallel statements with kernel statements?
That is, !$acc parallel loop if(acc) and its end directive with !$acc
kernels if(acc) and its end directive?

3. What happens if !$acc parallel loop if(acc) and its end directive is
moved one level up, i.e around the the do loop with it = 1, iter?

4

 | GPU-Porting Workshop CC-BY 4.0

https://workshop.gitlab-pages.dkrz.de/gpu-openacc-intro/index.html
https://creativecommons.org/licenses/by/4.0/
https://workshop.gitlab-pages.dkrz.de/gpu-openacc-intro/index.html
https://creativecommons.org/licenses/by/4.0/

Tasks (2/4)
4. What is the effect of specifically targeting loops with gang and vector? Can

you observe a difference between using !$acc parallel loop gang vector
if(acc) or using !$acc parallel loop if(acc) as before and decorating all
inner loops with either !$acc loop gang, !$acc loop vector, or !$acc loop
seq?

5. Can you apply collapse and still get the same result? What about
performance?

6. Replace !$acc parallel loop if(acc) with !$acc parallel loop async(1)
if(acc) and add !$acc wait(1) AFTER the end of the 1, niter do-loop.
What happens?

5

 | GPU-Porting Workshop CC-BY 4.0

https://workshop.gitlab-pages.dkrz.de/gpu-openacc-intro/index.html
https://creativecommons.org/licenses/by/4.0/
https://workshop.gitlab-pages.dkrz.de/gpu-openacc-intro/index.html
https://creativecommons.org/licenses/by/4.0/

Tasks (3/4)
Take the program , which is not yet ported to GPUs.

7. Compile and run it on CPU to calculate a reference result. Also note the
elapsed time.

8. Port the three kernels to GPU (one at a time) and check that the result stays
the same.

9. Improve the performance with explicit data movement (outside the timed
region)

10. Change the actual code (i.e. rewrite and fuse loops) to make the code even
more preformant

three_kernels.f90

6

 | GPU-Porting Workshop CC-BY 4.0

https://workshop.gitlab-pages.dkrz.de/gpu-openacc-intro/sessions/05/three_kernels.f90
https://workshop.gitlab-pages.dkrz.de/gpu-openacc-intro/sessions/05/three_kernels.f90
https://workshop.gitlab-pages.dkrz.de/gpu-openacc-intro/index.html
https://creativecommons.org/licenses/by/4.0/
https://workshop.gitlab-pages.dkrz.de/gpu-openacc-intro/index.html
https://creativecommons.org/licenses/by/4.0/

Tasks (4/4)
Use the example files and .

11. Compile and run the example on CPU.

12. Port it to GPU (one kernel at a time) and check the result

13. Improve the performance of your ported code with explicit data movement
(you can also try additional optimizations).

jacobi.f90 laplace2d.f90

7

 | GPU-Porting Workshop CC-BY 4.0

https://workshop.gitlab-pages.dkrz.de/gpu-openacc-intro/sessions/05/jacobi/jacobi.f90
https://workshop.gitlab-pages.dkrz.de/gpu-openacc-intro/sessions/05/jacobi/laplace2d.f90
https://workshop.gitlab-pages.dkrz.de/gpu-openacc-intro/sessions/05/jacobi/jacobi.f90
https://workshop.gitlab-pages.dkrz.de/gpu-openacc-intro/sessions/05/jacobi/laplace2d.f90
https://workshop.gitlab-pages.dkrz.de/gpu-openacc-intro/index.html
https://creativecommons.org/licenses/by/4.0/
https://workshop.gitlab-pages.dkrz.de/gpu-openacc-intro/index.html
https://creativecommons.org/licenses/by/4.0/

