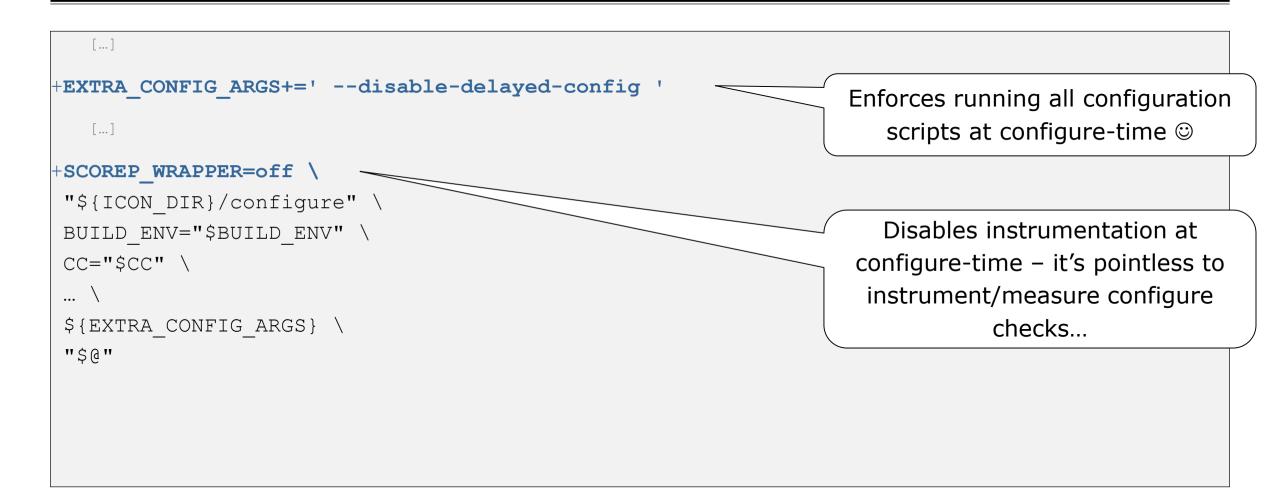


Facing The Complex Realities: A Case Study With ICON

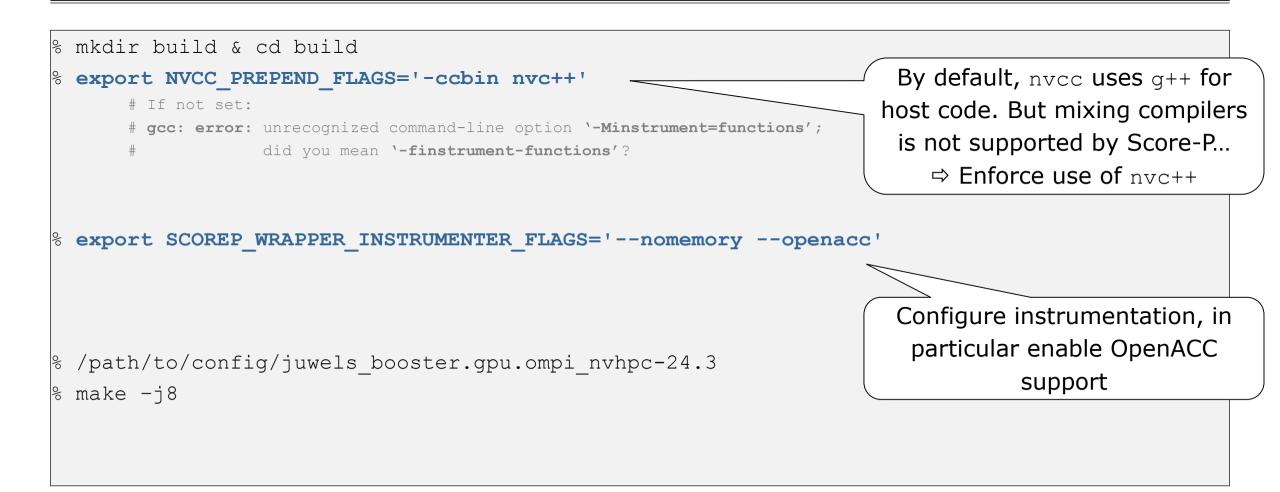
Markus Geimer Jülich Supercomputing Centre

Experiment setup

- Measurements on JUWELS Booster @ JSC
 - Using a single compute node: 4 MPI ranks, each driving one NVIDIA A100 GPU
- ICON 2024.07 open-source release
 - Compiled with NVHPC 24.3, CUDA 12.2 & OpenMPI 4.1.5
 - Analyzed using Score-P 8.4 and CubeGUI 4.8.2
- NextGEMS R2B4 test case
 - 3-days simulation 01. 03.01.1979
 - Atmosphere, with land (JSBACH lite) & sea ice
 - 20480 grid cells
 - Effective mesh size ~158 km
 - 90 vertical levels up to 75km
 - AES-physics
 - ECHAM Forcing

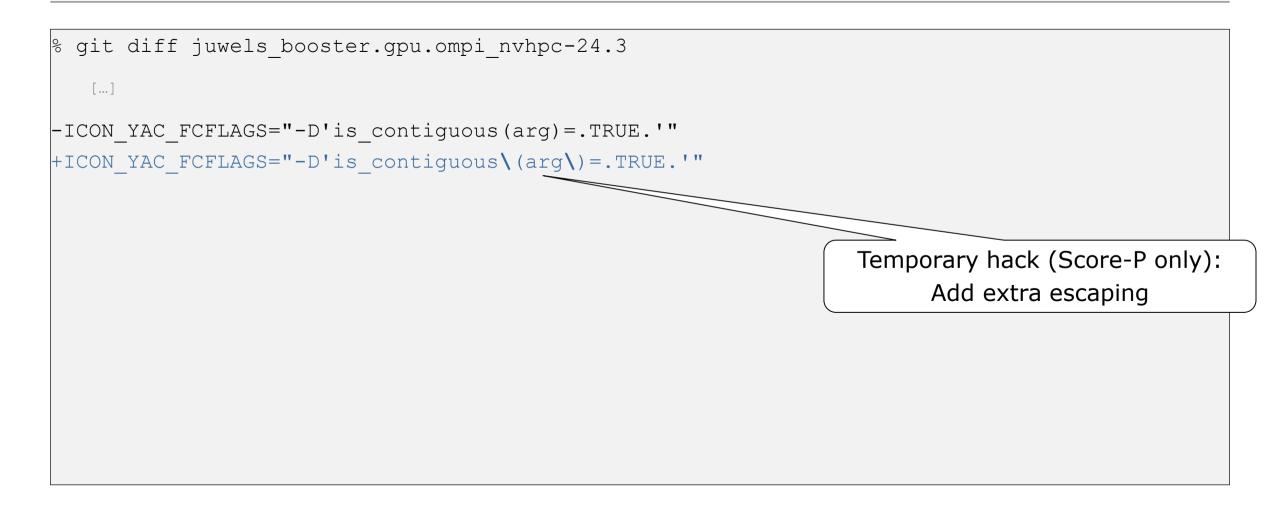

Step 0: Baseline measurement

- Configuring and building ICON w/o Score-P took ~31 min (using make -j8)
 - By default, make also runs configuration scripts of sub-components...
- Reported runtime: 374 s


Step 1: Enable Score-P instrumentation (I)

```
% git diff juwels booster.gpu.ompi nvhpc-24.3
MODULES='NVHPC/24.3-CUDA-12 OpenMPI/4.1.5 netCDF-Fortran ecCodes libfyaml/.0.9 CMake'
+MODULES+=' Score-P'
   [...]
-CC='mpicc'
+CC='scorep-mpicc'
                                                                         Load Score-P module
   [...]
                                                                                  &
-FC='mpif90'
                                                                    Use Score-P compiler wrappers
+FC='scorep-mpif90'
                                                                      instead of plain compilers
   [...]
-CUDACXX='nvcc'
+CUDACXX='scorep-nvcc'
```

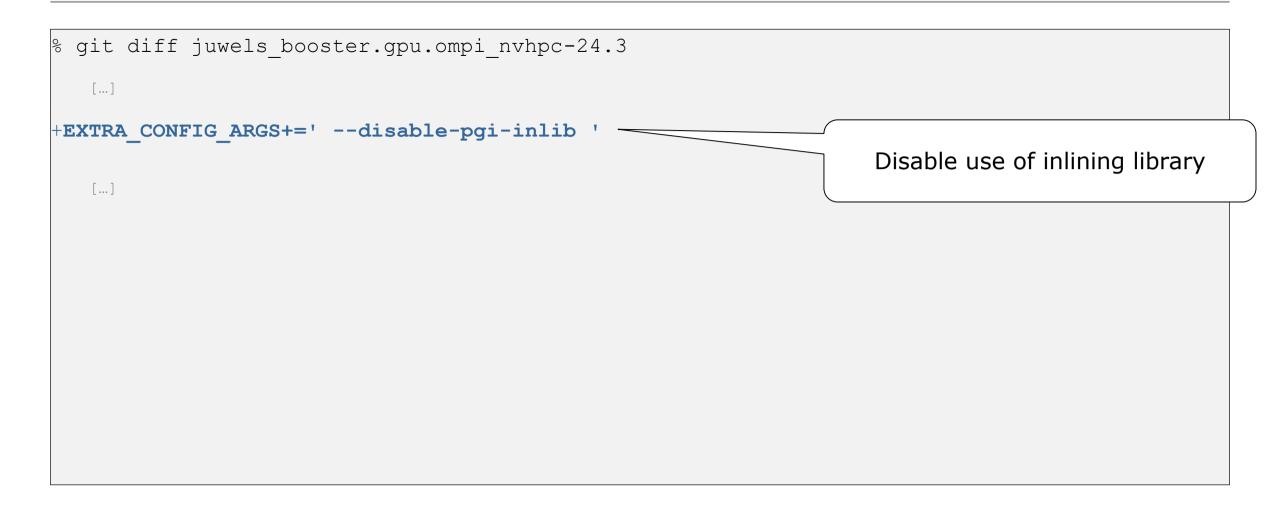
Step 1: Enable Score-P instrumentation (II)


Step 1: Enable Score-P instrumentation (III)

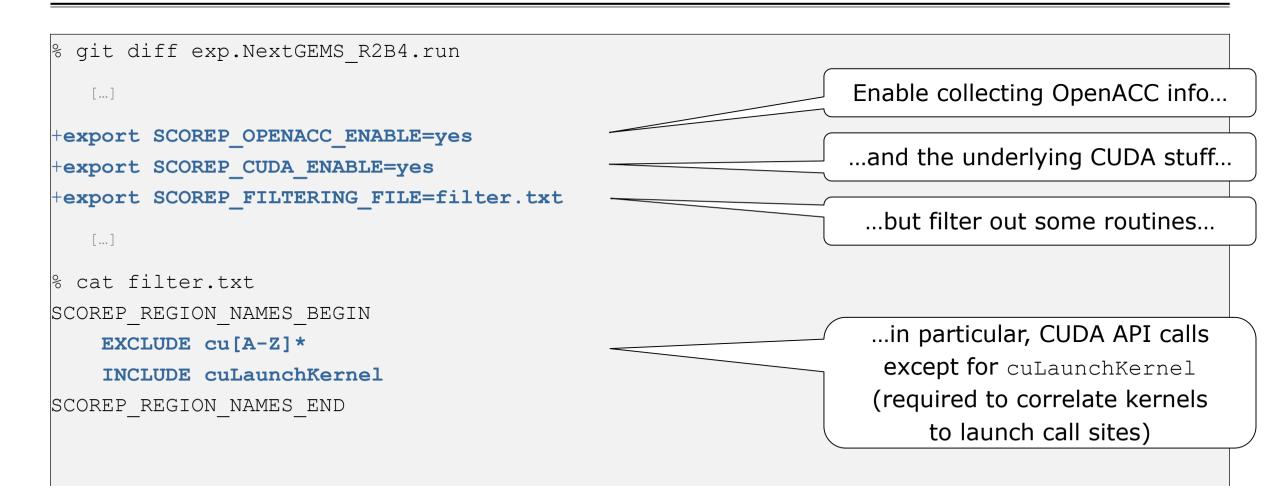
Step 1: Enable Score-P instrumentation (IV)

```
[...]
PPFC
      mo yac finterface.o
sh: -c: line 0: syntax error near unexpected token `('
sh: -c: line 0: 'mpif90 `scorep-config [...]` -DHAVE CONFIG H -I.
-I/path/to/icon/externals/yac/src -I/path/to/netCDF-Fortran/include -g -O2
-Mpreprocess -Mrecursive -Mallocatable=03 -acc=verystrict\, qpu -qpu=cc80
-Minfo=accel\,inline -Mstack arrays -Dis contiguous(arg)=".TRUE." -c -c
/path/to/icon/externals/yac/src/mo yac finterface.F90 _____mo yac finterface.o'
[Score-P] ERROR: Execution failed: [...]
make[4]: *** [Makefile:800: mo yac finterface.o] Error 1
                                                                    A Score-P bug, not handling
                                                                      parentheses correctly...
                                                                   (Fix implemented – will be in Score-P 9.0)
```

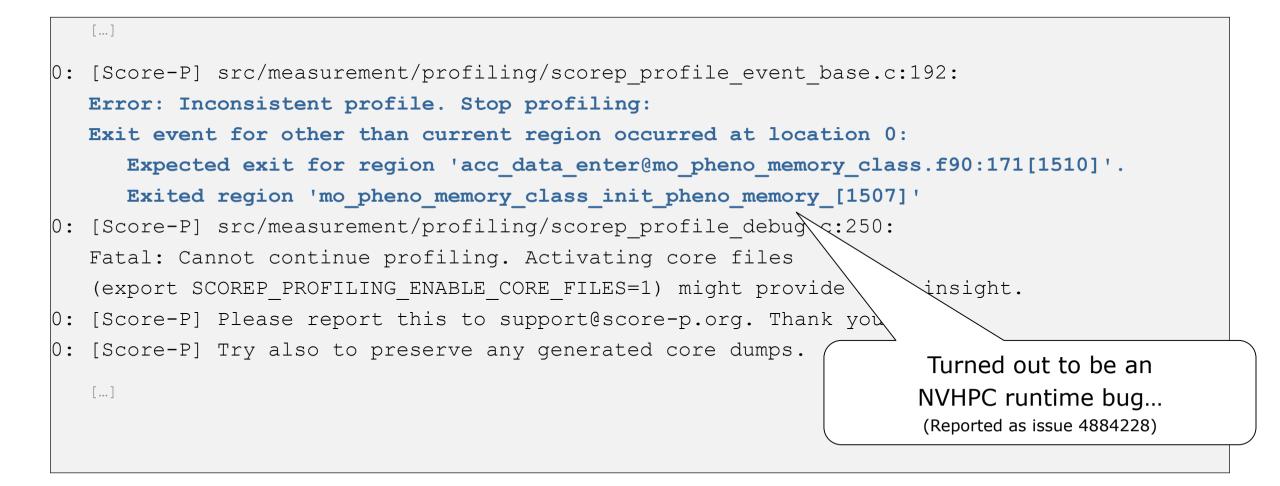
Step 1: Enable Score-P instrumentation (V)



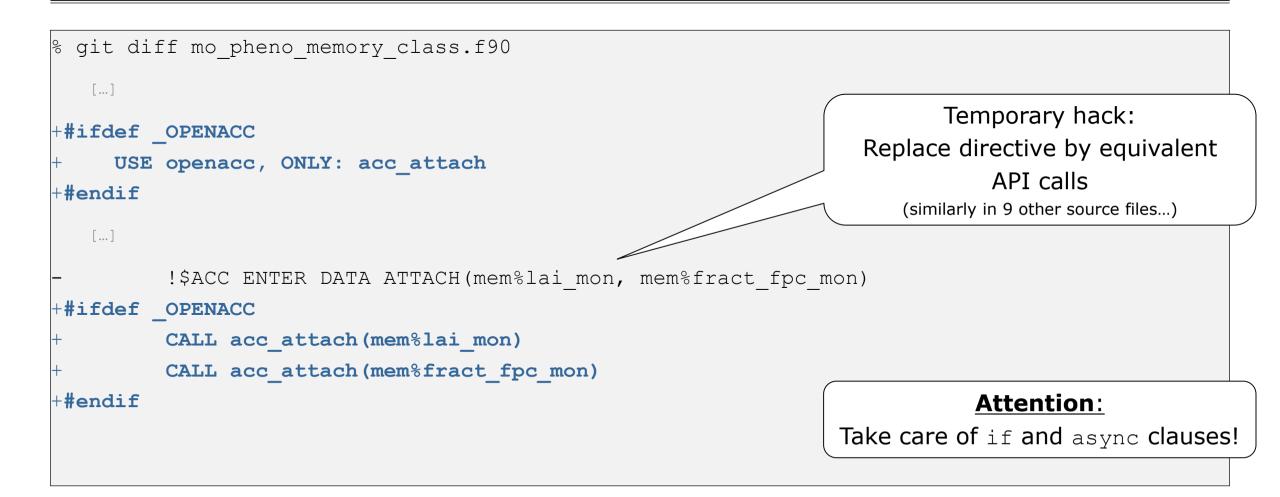
Step 1: Enable Score-P instrumentation (VI)


VIRTUAL INSTITUTE - HIGH PRODUCTIVITY SUPERCOMPUTING

Step 1: Enable Score-P instrumentation (VII)



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING


Step 2: Collect an initial profile (I)

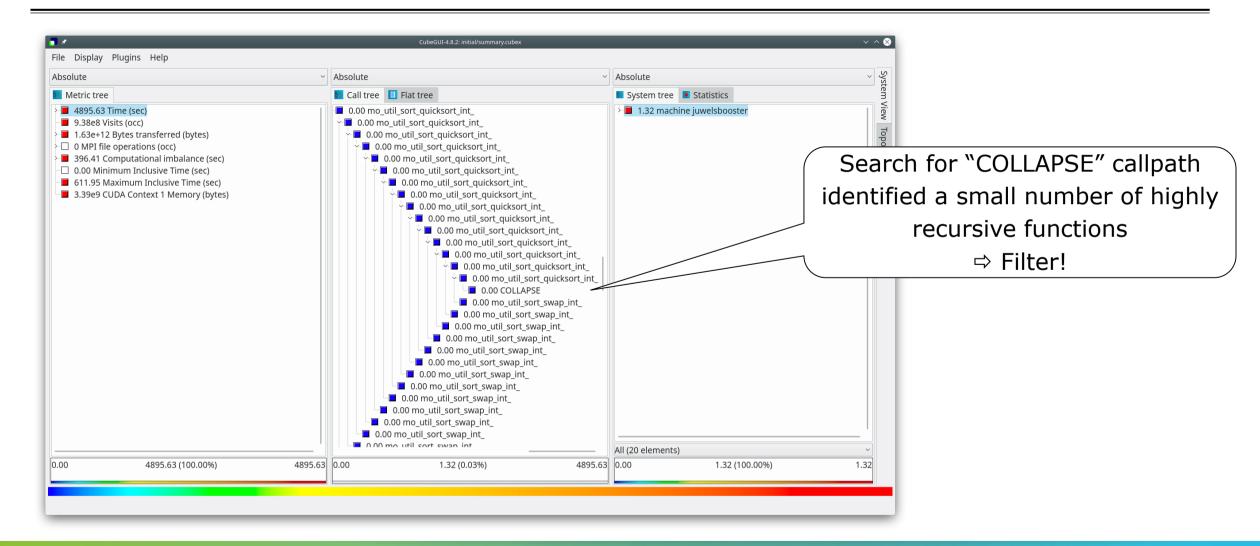
Step 2: Collect an initial profile (II)

Step 2: Collect an initial profile (III)

Houston, we have a profile!

* *	CubeGUI-4.8.2: initial/summary.cubex	~ ^ 🛛
File Display Plugins Help		
Absolute ~	Absolute ~	Absolute ~ Syst
Netric tree	Call tree	System tree Statistics
 4895.63 Time (sec) 9.38e8 Visits (occ) 1.63e+12 Bytes transferred (bytes) 0 MPI file operations (occ) 396.41 Computational imbalance (sec) 0.00 Minimum Inclusive Time (sec) 611.95 Maximum Inclusive Time (sec) 3.39e9 CUDA Context 1 Memory (bytes) 	↓ ■ 4895.63 icon	Absolute View Topologies General View Topologies Gener
I	I	All (20 elements)
0.00 4895.63 (100.00%) 4895.63	0.00 4895.63 (100.00%) 4895.63	0.00 4895.63 (100.00%) 4895.63

Step 0: Baseline measurement (revisited)


- We have modified the
 - build configuration to
 - use nvc++ as CUDA host code compiler
 - disable use of inlining libraries
 - source code to
 - work around a compiler runtime issue
- Thus, we need to redo the baseline measurement!
- New reported runtime: 373 s
 - ⇒ Modifications have no significant impact, result within measurement noise

Step 3: Examine initial profile & optimize configuration (I)

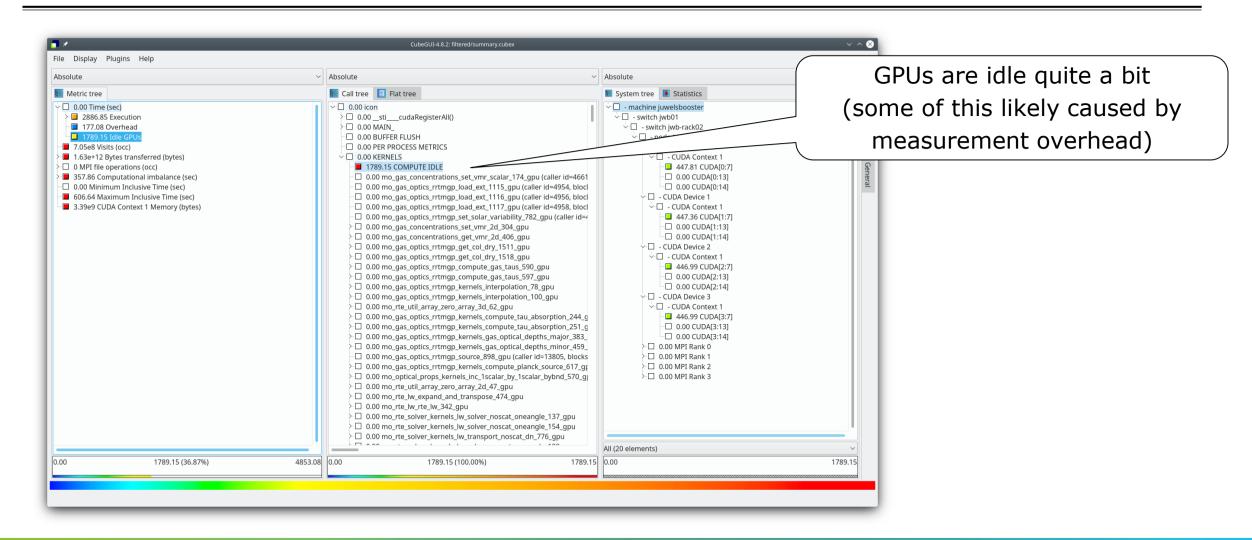
- Reported runtime: 596 s ⇒ ~60% overhead!
- Plus some warnings in the error log:

```
[...]
0: [Score-P] src/measurement/profiling/scorep_profile_collapse.c:82:
Warning: Score-P callpath depth limitation of 100 exceeded.
0: Reached callpath depth was 580.
0: Consider setting SCOREP_PROFILING_MAX_CALLPATH_DEPTH to 580.
[...]
```

Step 3: Examine initial profile & optimize configuration (II)

Step 3: Examine initial profile & optimize configuration (III)

% scor	ep-score -	r scorep	icon in	nitial	4 sum/pr	ofile.cubex less
[]	1	<u>-</u> _			^ / 1	Score report shows more
type	max_buf[B]	visits	time[s]	time[%]	time/	region candidates for filtering
					visit[us]	
USR	590,389,800	90,495,276	10.30	0.2	0.11	<pre>mo_parallel_config_idx_1d_</pre>
CUDA	585,226,848	48,671,704	323.22	6.6	6.64	cuLaunchKernel
CUDA	316,997,902	48,671,708	1810.11	37.0	37.19	COMPUTE IDLE
CUDA	261,064,800	5,169,600	26.19	0.5	5.07	<pre>mo_jsb_tile_class_aggregate_weighted_by_fract_2d_890_gpu</pre>
USR	184,350,296	28,361,584	6.97	0.1	0.25	mo_jsb_control_debug_on_
MPI	121,860,847	5,476,592	7.62	0.2	1.39	MPI_Irecv
CUDA	107,414,580	16,525,293	496.91	10.2	30.07	DEVICE SYNCHRONIZE
USR	103,013,092	15,848,168	3.59	0.1	0.23	<pre>mo_mpi_get_comm_acc_queue_</pre>
USR	102,772,800	15,811,200	2.81	0.1	0.18	<pre>mo_jsb_var_class_t_jsb_var_real2d_associate_pointers_</pre>
CUDA	95,555,292	1,892,184	8.16	0.2	4.31	<pre>mo_communication_orig_exchange_data_mult_2363_gpu</pre>
CUDA	95,555,292	1,892,184	6.73	0.1	3.56	<pre>mo_communication_orig_exchange_data_mult_2465_gpu</pre>
USR	87,610,692	13,478,568	5.84	0.1	0.43	mo_jsb_control_timer_on_
USR	85,802,132	13,200,328	3.42	0.1	0.26	<pre>mo_real_timer_util_read_real_time_</pre>
USR	85,802,132	13,200,328	2.20	0.0	0.17	util_read_real_time
[]						


Step 3: Examine initial profile & optimize configuration (IV)

- Filtering only reduced runtime overhead by 1%...
- Tweaking CUDA measurement options to bare minimum gave another 15%
 - ... but no way to get the overhead below 40% if device kernel data is measured (significantly better than NVIDIA's Nsight Systems, but still quite high)
 - Interpret the data with a large grain of salt!
- Measuring only host-side events has ~10% overhead ⇒ acceptable

Side note: Score-P development

- We applied a profiler to profile Score-P while profiling ICON ☺
- Analyzing the identified hotspots, we found there is some room for improvement
 - Our current code works pretty well for many, many cases
 - But ICON is really a stress test...
- Some smaller improvements may already make it into Score-P 9.0, others require more thoughts and coding work
 - Please stay tuned!
- But there are limitations in what we can do, imposed by the tools interfaces we use
 - Here: CUPTI, provided by CUDA

Step 4: Examine "optimized" profile w/ device data (I)

Step 4: Examine "optimized" profile w/ device data (II)

bsolute	~ Absolute ~	Absolute	Syst
Metric tree	S Call tree E Flat tree	System tree 🔳 Statistics	titem '
 0.00 Time (sec) 0.00 Execution 357.86 Computation 279.08 MPI 793.63 OpenACC 818.89 CUDA 177.08 Overhead 1789.15 Idle GPUs 7.05e8 Visits (occ) 0 MPI file operations (occ) 357.86 Computational imbalance (sec) 0.00 Minimum Inclusive Time (sec) 606.64 Maximum Inclusive Time (sec) 3.39e9 CUDA Context 1 Memory (bytes) 	 0.53 mo_solve_nonhydro_solve_nh_840_gpu 2.37 mo_math_gradients_grad_green_gauss_cell_dycore_874_gpu 1.24 mo_fortran_tools_init_contiguous_dp_1676_gpu 9.00 mo_solve_nonhydro_solve_nh_930_gpu 1.56 mo_solve_nonhydro_solve_nh_1114_gpu (caller id=11678, block: 1.47 mo_solve_nonhydro_solve_nh_1134_gpu (caller id=11684, block: 2.37 mo_solve_nonhydro_solve_nh_1162_gpu (caller id=11684, block: 2.37 mo_solve_nonhydro_solve_nh_1162_gpu 0.51 mo_solve_nonhydro_solve_nh_1344_gpu 18.54 mo_solve_nonhydro_solve_nh_1685_gpu 2.34 mo_solve_nonhydro_solve_nh_1685_gpu 1.10 mo_solve_nonhydro_solve_nh_1685_gpu 1.10 mo_solve_nonhydro_solve_nh_1204_gpu (caller id=11774, block: 3.79 mo_solve_nonhydro_solve_nh_2016_gpu (caller id=11766, block: 4.67 mo_solve_nonhydro_solve_nh_2201_gpu (caller id=11766, block: 4.67 mo_solve_nonhydro_solve_nh_2222_gpu (caller id=11766, block: 5.27 mo_solve_nonhydro_solve_nh_2238_gpu (caller id=11772, block: 0.65 mo_solve_nonhydro_solve_nh_2238_gpu (caller id=11778, block: 0.65 mo_solve_nonhydro_solve_nh_2238_gpu (caller id=11778, block: 0.67 mo_solve_nonhydro_solve_nh_2238_gpu (caller id=11778, block: 0.72 mo_solve_nonhydro_solve_nh_2338_gpu (caller id=11778, block: 0.87 mo_solve_nonhydro_solve_nh_2339_gpu (caller id=11784, block: 0.87 mo_solve_nonhydro_solve_nh_2339_gpu (caller id=11784, block: 0.87 mo_solve_nonhydro_solve_nh_2339_gpu (caller id=11784, block: 0.44.70 mo_solve_nonhydro_solve_nh_2339_gpu (caller id=11790, block: 0.45 mo_solve_nonhydro_solve_nh_2339_gpu (caller id=11790, block: 0.44.70 mo_solve_nonhydro_solve_nh_2339_gpu (caller id=11790, block: 0.45 mo_solve_nonhydro_solve_nh_2342_gpu (caller id=11790, block: 0.44.70 mo_solve_nonhydro_solve_nh_2342_gpu (caller id=11790, block: 0.44.70 mo_solve_nonhydro_solve_nh_2342_gpu (caller	→ machine juwelsbooster → switch jwb01 → switch jwb-rack02 → node jwb056.juwels → - CUDA Device 0 → - CUDA Context 1 → 0.00 CUDA[0:13] → 11.17 CUDA[0:14] → - CUDA Device 1 → - CUDA Device 1 → - CUDA Device 2 → - CUDA Device 2 → - CUDA Context 1 → 0.00 CUDA[2:13] → 11.16 CUDA[2:14] → - CUDA Device 3 → - CUDA Context 1 → 0.00 CUDA[2:13] → 11.17 CUDA[3:14] → - CUDA Context 1 → 0.00 MPI Rank 0 → 0.00 MPI Rank 1 → 0.00 MPI Rank 2 → 0.00 MPI Rank 3	Many frequently called, but rather small kernels Are there possibilities to fuse kernels, thus decreasing
	 3.60 mo_solve_nonhydro_solve_nh_2178_gpu (caller id=11854, block: 0.17 mo_solve_nonhydro_solve_nh_2511_gpu (caller id=11857, block: 	All (20 elements)	overheads?

Step 4: Examine "optimized" host-only profile (I)

Step 4: Examine "optimized" host-only profile (II)

Take-away messages

- Analyzing large codes like ICON can be challenging
 - May uncover bugs & deficiencies in both tools and compiler runtimes
- The basic process is the same than with small(er) codes
 - Baseline ⇒ instrumentation ⇒ initial profile ⇒ adjust configuration ⇒ optimized profile ⇒ analysis

Don't hesitate to contact us if you're stuck

- The reasons for warnings and error messages are sometimes non-obvious
 - We've often seen them before and can suggest fixes or workarounds
- We definitely want to know when something is suboptimal or even broken
 - If it's our fault, we want to fix it
 - If it's someone else's fault, we'd like to bug them to fix it $\ensuremath{\textcircled{}}$