
VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Markus Geimer
Jülich Supercomputing Centre

3rd natESM Technical Training:

Parallel Performance Analysis



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Virtual Institute – High Productivity Supercomputing

Goal: Improve the quality and accelerate the development process of

complex simulation codes running on highly-parallel computer systems

 Start-up funding (2006–2011)  

by Helmholtz Association of German Research Centres
 Initially 4 partner institutions, meanwhile 15 partners

 Activities
 Development and integration of HPC application tools
 Primarily correctness checking & performance analysis

 Academic workshops: e.g. ProTools@SC24 (Monday, November 19, 2024)

 Tools training via conference tutorials and multi-day “bring-your-own-code” Tuning Workshops
 Face-to-face & side-by-side hands-on coaching now successfully migrated to virtual/on-line events

https://www.vi-hps.org

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 2



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Introduction to

Parallel Performance Engineering

(with content used with permission from tutorials
by Bernd Mohr/JSC and Luiz DeRose/Oracle)



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance: An old problem

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 4

“The most constant difficulty in contriving

the engine has arisen from the desire to

reduce the time in which the calculations

were executed to the shortest which is

possible.”
Charles Babbage

1791 – 1871   

Difference Engine



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Today: The “free lunch” is over

■ Moore's law is still in charge, but
■ Clock rates no longer increase

■ Performance gains only through

increased parallelism

■ Optimizations of applications more

difficult
■ Increasing application complexity

■ Multi-physics

■ Multi-scale

■ Increasing machine complexity
■ Hierarchical networks / memory

■ More CPUs / multi-core / accelerators

 Every doubling of scale reveals a new bottleneck!

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 5



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance factors of parallel applications

■ “Sequential” performance factors
■ Computation

■ Cache and memory

■ Input / output

■ “Parallel” performance factors
■ Partitioning / decomposition

■ Communication (i.e., message passing)

■ Multithreading

■ Synchronization / locking

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 6



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Parallel performance engineering in practice

■ Successful engineering is a combination of
■ Careful setting of various tuning parameters

■ The right algorithms and libraries

■ Compiler flags and directives

■ …

■ Thinking !!!

■ Measurement is better than guessing…
■ To determine performance bottlenecks

■ To compare alternatives

■ To validate tuning decisions and optimizations

 After each step!

■ … but avoid excessive “do-it-yourself” solutions!
■ Simple time measurements for phases OK to get a coarse overview,

but specialized tools can provide many more insights

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 7



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Parallel performance engineering in practice (cont.)

■ Starting point: Well-understood application running at scale N
■ Make sure it produces correct results

■ It is advantageous to have (automatic) verification tests in place

■ Define your goal
■ Reduce runtime/resource consumption at scale N

■ Retain good scalability going to M >> N

■ Predict behavior
■ What is the current bottleneck?

■ What performance/scalability should we see?

■ Measure possible bottlenecks
■ Idle resources

■ Changes in profile

■ Compare observed behavior with expectation and draw conclusions

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 8



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance engineering workflow

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 9

•Calculation of metrics

•Presentation of results

•Identification of performance 
problems

•Modifications intended to 
eliminate/reduce performance 
problem

•Collection of performance data

•Aggregation of performance data

•Build model of predicted 
performance

•Select data to measure

•Prepare application with symbols

•Insert extra code (probes/hooks)

Preparation Measurement

AnalysisOptimization



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

The 80/20 rule

■ Programs typically spend 80% of their time in 20% of the code

■ Programmers typically spend 20% of their effort to get 80% of the total speedup 

possible for the application
 Know when to stop!

■ Don't optimize what does not matter
 Make the common case fast!

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 10

“If you optimize everything,

you will always be unhappy.”

Donald E. Knuth



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance modeling: Predicting behavior

■ Simplest models: Scaling properties
■ Which parts of the code are serial and parallel?

■ How much time is spent in each?

■ How efficient are they currently?

■ More complex concepts
■ Roofline model (comparing throughput to theoretical maxima)

■ Load balancing: What code is responsible for idle resources?

■ Critical path analysis (e.g., Scalasca)

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 11



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Strong scaling

 Increasing compute power yields faster solution on the same problem

 Limited by Amdahl’s law
■ Speedup ≤ (serial + parallel ) / (serial + parallel / N ) = 1 / (serial + parallel / N )

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 12



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Weak scaling

 Increasing compute power yields larger problems solved in the same time

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 13



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

What to measure

 You have some hypothesis about how your code will behave

 This requires certain data
■ Simple scaling models: execution time, possibly subdivided between serial and parallel parts

■ Roofline model: operations/second and bytes/second corresponding to one or more rooflines

■ Load balancing: distribution of time spent in computation and communication

■ Critical path: detailed measurement of execution time across all nodes and threads

 Allows you to ignore certain other data
■ Example: Load balancing

■ Detection typically based on communication wait states

■ Don’t need to analyze computation details for that

When possible, measure only what you need to test your hypothesis
■ All-in-one-run only when it’s unavoidable

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 14



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Metrics of performance

■ What can be measured?
■ A count of how often an event occurs

■ E.g., the number of MPI point-to-point messages sent

■ The duration of some interval
■ E.g., the time spent these send calls

■ The size of some parameter
■ E.g., the number of bytes transmitted by these calls

■ Derived metrics
■ E.g., rates / throughput

■ Needed for normalization

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 15



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Measurement practices

Measurements on HPC systems are noisy
■ Shared resources: network, file systems

■ Nondeterminism: cache effects, which nodes were allocated, small race conditions

 Particularly relevant to wall time, but can affect other metrics

 As with all scientific measurements, repeat the experiment
■ Especially if the initial results look weird!

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 16



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Measurement issues

■ Accuracy
■ Intrusion overhead

■ Measurement itself needs time and thus lowers performance

■ Perturbation
■ Measurement alters program behaviour

■ E.g., memory access pattern

■ Accuracy of timers & counters

■ Granularity
■ How many measurements?

■ How much information / processing during each measurement?

 Tradeoff: Accuracy vs. Expressiveness of data

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 17



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling

■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization

■ Tracing

■ How is performance data analyzed?
■ Online

■ Post mortem

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 18



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Sampling

 Running program is periodically interrupted

to take measurement
 Timer interrupt, OS signal, or HWC overflow

 Service routine examines return-address stack

 Addresses are mapped to routines using symbol table 

information

 Statistical inference of program behavior
 Not very detailed information on highly volatile metrics

 Requires long-running applications

Works with unmodified executables

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 19

Time

main foo(0) foo(1) foo(2) int main()
{
int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Measurement

t
9

t
7

t
6

t
5

t
4

t
1

t
2

t
3

t
8



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Instrumentation

Measurement code is inserted such that every

event of interest is captured directly
 Can be done in various ways

 Advantage:
 Much more detailed information

 Disadvantage:
 Processing of source-code / executable

necessary

 Large relative overheads for small functions

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 20

Time

Measurement int main()
{
int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Time

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
9

t
10 t

11
t
12

t
13

t
14

main foo(0) foo(1) foo(2)

Enter(“main”);

Leave(“main”);

Enter(“foo”);

Leave(“foo”);



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Instrumentation techniques

■ Static instrumentation
■ Program is instrumented prior to execution

■ Dynamic instrumentation
■ Program is instrumented at runtime

■ Code is inserted
■ Manually

■ Automatically
■ By a preprocessor / source-to-source translation tool

■ By a compiler

■ By linking against a pre-instrumented library / runtime system

■ By binary-rewrite / dynamic instrumentation tool

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 21



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling

■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization

■ Tracing

■ How is performance data analyzed?
■ Online

■ Post mortem

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 22



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Profiling / Runtime summarization

■ Recording of aggregated information
■ Total, maximum, minimum, …

■ For measurements
■ Time

■ Counts
■ Function calls

■ Bytes transferred

■ Hardware counters

■ Over program and system entities
■ Functions, call sites, basic blocks, loops, …

■ Processes, threads

 Profile = summarization of events over execution interval

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 23



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Tracing

■ Recording detailed information about significant points (events) during execution of 

the program
■ Enter / leave of a region (function, loop, …)

■ Send / receive a message, …

■ Save information in event record
■ Timestamp, location, event type

■ Plus event-specific information (e.g., communicator,

sender / receiver, …)

■ Abstract execution model on level of defined events

 Event trace = Chronologically ordered sequence of event records

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 24



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

58 ENTER foo

62 SEND to B

64 EXIT foo

...

...

Local trace A

Local trace B

60 ENTER bar

68 RECV from A

69 EXIT bar

...

...

Event tracing

void foo() {

...

send(B, tag, buf);
...

}

Process A

void bar()  {

...
recv(A, tag, buf);

...

}

Process B

MONITOR

MONITOR

s
y
n
c
h
ro

n
iz

e
(d

)
void bar() {
trc_enter("bar");
...
recv(A, tag, buf);
trc_recv(A);
...
trc_exit("bar");

}

void foo() {
trc_enter("foo");
...
trc_send(B);
send(B, tag, buf);
...
trc_exit("foo");

}

instrument

Global trace view 

58 A ENTER foo

60 B ENTER bar

62 A SEND to B

64 A EXIT foo

68 B RECV from A

...

69 B EXIT bar

...

(Virtual merge)

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 25



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Tracing Pros & Cons

■ Tracing advantages

■ Event traces preserve the temporal and spatial relationships among individual events

( context)

■ Allows reconstruction of dynamic application behavior on any required level of abstraction

■ Most general measurement technique
■ Profile data can be reconstructed from event traces

■ Disadvantages

■ Traces can very quickly become extremely large

■ Writing events to file at runtime may causes perturbation

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 26



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling

■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization

■ Tracing

■ How is performance data analyzed?
■ Online

■ Post mortem

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 27



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Online analysis

■ Performance data is processed during measurement run

■ Process-local profile aggregation

■ Requires formalized knowledge about performance bottlenecks

■ More sophisticated inter-process analysis using

■ “Piggyback” messages

■ Hierarchical network of analysis agents

■ Online analysis often involves application steering to interrupt and re-configure the 

measurement

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 28



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Post-mortem analysis

■ Performance data is stored at end of measurement run

■ Data analysis is performed afterwards

■ Automatic search for bottlenecks

■ Visual trace analysis

■ Calculation of statistics

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 29



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Example: Time-line visualization

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 30

58 A ENTER foo

60 B ENTER bar

62 A SEND to B

64 A EXIT foo

68 B RECV from A

...

69 B EXIT bar

...

main
foo
bar

58 60 62 64 66 68 70

B

A

Global trace view 

Post-Mortem

Analysis



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

No single solution is sufficient!

A combination of different methods, tools and techniques is typically needed!

 Analysis
 Statistics, visualization, automatic analysis, data mining, ...

Measurement
 Sampling / instrumentation, profiling / tracing, ...

 Instrumentation
 Source code / binary, manual / automatic, ...

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 31



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Typical performance analysis procedure

■ Do I have a performance problem at all?
■ Time / speedup / scalability measurements

■ What is the key bottleneck (computation / communication)?
■ MPI / OpenMP / flat profiling

■ Where is the key bottleneck?
■ Call-path profiling, detailed basic block profiling

■ Why is it there?
■ Hardware counter analysis, trace selected parts to keep trace size manageable

■ Does the code have scalability problems?
■ Load imbalance analysis, compare profiles at various sizes function-by-function

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 32



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Tools Overview



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Performance engineering workflow

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 34

Preparation Measurement

AnalysisOptimization

You!



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

 Infrastructure for instrumentation and performance measurements

 Instrumented application can be used to produce several results:
 Call-path profiling: CUBE4 data format used for data exchange

 Event-based tracing: OTF2 data format used for data exchange

 Supported parallel paradigms:
 Multi-process: MPI, SHMEM

 Thread-parallel: OpenMP, POSIX threads

 Accelerator-based: CUDA, HIP, OpenCL, OpenACC, Kokkos

 Open Source; portable and scalable to all major HPC systems

 Initial project funded by BMBF

 Further developed in multiple 3rd-party funded projects

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 35

https://doi.org/10.5281/zenodo.1240731


VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P ecosystem

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 36

Application

Vampir Scalasca TAU

Accelerator-based 

parallelism

(CUDA, HIP, OpenACC, 

OpenCL, Kokkos)

Score-P measurement infrastructure

Event traces (OTF2)

Sampling

interrupts

(PAPI, PERF)

Call-path profiles (CUBE4, TAU)

Process-level parallelism

(MPI, SHMEM)

Thread-level parallelism

(OpenMP, Pthreads)

Source code 

instrumentation

(Compiler, User)

CUBE TAUdb

Hardware counter

(PAPI, rusage, PERF, plugins)

I/O Activity Recording

(Posix I/O, 

MPI-IO)

Instrumentation wrapper

Extra-P



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Score-P features

 Open source: 3-clause BSD license
 Commitment to joint long-term cooperation

 Development based on meritocratic governance model

 Open for contributions and new partners

 Portability: supports all major HPC platforms

 Scalability: successful measurements with >1M threads

 Functionality:
 Generation of call-path profiles and event traces (supporting highly scalable I/O)

 Using direct instrumentation and sampling

 Flexible measurement configuration without re-compilation

 Recording of time, visits, communication data, hardware counters

 Support for MPI, SHMEM, OpenMP, Pthreads, CUDA, HIP, OpenCL, OpenACC, Kokkos

(and many combinations)

 Latest release: Score-P 8.4 (March 2024)

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 37



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Cube

 Parallel program analysis report exploration tools
 Libraries for XML+binary report reading & writing

 Algebra utilities for report processing

 GUI for interactive analysis exploration
 Requires Qt ≥ 5

 Originally developed as part of the Scalasca toolset

 Now available as a separate component
 Can be installed independently of Score-P

and Scalasca, e.g., on laptop or desktop

 Latest release: Cube v4.8.2 (September 2023)

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 38

CubeLib

CubeGUI

Note: source distribution tarballs for Linux, as well as

binary packages provided for Windows & MacOS,

from www.scalasca.org website in software/Cube-4x

https://doi.org/10.5281/zenodo.1248087
https://doi.org/10.5281/zenodo.1248078


VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Call

path

P
ro

p
e
rt

y

Location

Analysis presentation and exploration

 Representation of values (severity matrix)

on three hierarchical axes
 Performance property (metric)

 Call path (program location)

 System location (process/thread)

 Three coupled tree browsers

 Cube displays severities
 As value: for precise comparison

 As color: for easy identification of hotspots

 Inclusive value when closed & exclusive value when expanded

 Customizable via display modes

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 39



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

How is it

distributed across

the processes/threads?

What kind of

performance

metric?

Where is it in the

source code?

In what context?

Analysis presentation

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 40



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Cube

S
c
o
re

-P
Putting it all together

3RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024) 41

Scalasca Trace Tools

Event traces Parallel trace 
analysis

Trace analysis 
report

Summary 
report

Optimized measurement configuration

Instr.

target

application 

Measurement

library

HWC

Instrumented 
executable

Instrumenter
compiler/linker

Source 
modules

R
e
p
o
rt

  
p
o
s
tp

ro
c
e
s
s
in

g



VIRTUAL INSTITUTE – HIGH PRODUCTIVITY SUPERCOMPUTING

Sponsors

423RD NATESM TECHNICAL TRAINING (JÜLICH, NOVEMBER 5-6, 2024)


