
ComIn

ICON Community
Interface

How to make direct use of ICON

without really touching it?

ICON control flow

• Release ICON 2024.10 Fortran
and C code: 1,123,740 lines

• Where should my
implementations be?

• Going through review process

• Difficult to maintain

Source: F.Prill (DWD)

Overview

1

ICON Community Interface (ComIn) :

Source: F.Prill (DWD)

• Connects plugins to the ICON host model

• Plugin functions are called at pre-defined
events (Entry Points)

• Regulates the access and creation of model
variables

• Guaranties stable interface for external
projects

Overview

2

Plugin mechanism for ICON

Language interoperability in plugins

• Shared libraries for Fortran or C/C++ plugins

• Python plugins do not need any compilation process

Behind the scenes: dynamic linking

• ComIn relies on dynamic linking to implement the plugin functionality.

• Dynamic/shared linking: operating system loads the necessary shared libraries into memory at runtime

Overview

3

ComIn plugins building blocks

4

Overview

append subroutines to a callback register

Overview

4

read/write access to model variables

append subroutines to a callback register

Overview

4

read/write access to model variables

append subroutines to a callback register

creating additional variables

Overview

4

descriptive data structures
contain information on the ICON setup, the
computational grids, and the simulation

read/write access to model variables

append subroutines to a callback register

creating additional variables

Overview

4

• ComIn is an interface not
a coupler

• YAC instances can be
used in ComIn Plugins

Overview

5

Enable the plugin mechanism

multiple plugins can be added

filename of Python script passed
as an option

embedded Python
interpreter

• Make sure ICON is configured with --enable-comin

• In the Fortran Namelist:

Overview

6

Embedded Python, wrapped pointers

• ComIn plugins makes use of an embedded Python interpreter.

• Executes a Python script in the primary constructor

• Field pointers are directly exposed to plugins, wrapped as NumPy arrays
GPU accelerators: device pointers wrapped by CuPy library

7

Overview

Entry point implementation

• Currently 41 entrypoints

• New entry points can be easily introduced:
CALL icon_call_callback(…)

• Granularity: above block loop level, only global variables are exposed

• ICON calls ComIn, not vice versa!
processes in the host model are not switched off, but can only be deactivated using ICON namelist
switches

8

Overview

Project history and status

9

Overview

Nov 2022
Project started as a collaboration:

DWD, DLR-IPA and FZJ

Jan 2023
• DKRZ joined the project

Jul 2023
• Design white paper and mock-up completed

Jan 2024

• ComIn v0.1.0 is part of the first ICON Open Source
Release

Oct 2024
• ComIn v0.2.0 released

➢ “ComIn could serve as the potential interface to the wider community”
ICON Dev Meeting, Oct 2024

➢ “ComIn was recognized as a valuable tool by the community.”
natESM Newsletter, Issue 5, May 2024

Feb 2025
• Next release ComIn v0.3.0

(adds data types, C++ refactoring, …)

Jun 2025
• ComIn v1.0.0

• Stable Interface

Key Resources

10

Overview

Key Resources

GitLab-Project

https://gitlab.dkrz.de/icon-comin/comin

• Source code and release notes

• Plugin examples

• Tests

10

Overview

Extensive documentation

https://icon-comin.gitlab-pages.dkrz.de/comin/

• User guide

• Design document

• Developer document

• Doxygen page

Key Resources

10

Overview

https://icon-comin.gitlab-pages.dkrz.de/comin/

Fortran, C/C++ and Python API

• Equivalent interfaces for plugins:
• Python
• Fortran
• C/C++.

Key Resources

10

Overview

ComIn Exercise Notebooks

https://gitlab.dkrz.de/icon-comin/comin-
training-exercises

• Prepared for Levante platform

Key Resources

10

Overview

https://gitlab.dkrz.de/icon-comin/comin-training-exercises

• ComIn is shipped together with ~30
tests (ctest testing framework)

• Makes use of previously recorded ICON
datasets ("record & replay" tool)

• record & replay is very helpful for
developing plugins

• Gitlab CICD pipeline:
• automated builds and tests
• source code formatting
• compilation of documentation

Key Resources
Tests, "record & replay" tool, CICD
Gitlab pipeline

10

Overview

Applications

11

11

Applications

Applications

Point source plugin
• Requesting a tracer that participates in

ICON's turbulence and convection scheme

• Adding point source emissions to this
tracer

• Using KDTree of scipy to locate the point
source

• Updating the tracer with tendencies
received from ICON

• Can be easily extended to a 'real world'
application (for example a radioactive
tracer or a volcanic ash source)

Source : D. Rieger, DWD 12

Applications

• Paraview is an open-source data
analysis and visualization
application

• Simulation data can be streamed
into Paraview using the Catalyst API
specification.

• Application example:

• Implement the Catalyst
streaming for ICON as a ComIn
plugin.

Catalyst in situ visualization

Source: N. Dreier, DKRZ 13https://www.paraview.org

Applications

• Eclipses can significantly reduce incoming solar energy,
impacting:
• Radiation variables
• (Surface) temperature
• Boundary layer wind and height, Cloud formation

• Proposed Solution:
• Reduce S0 in ICON
• The programming feature is already implemented

in Python using offline data.
• Implementation is being transferred into a ComIn

Python plugin to test this feature in ICON.

• Chosen Entry Points:
• EP_ATM_RADIATION_BEFORE and

EP_ATM_RADIATION_AFTER to scale transmissivity in
the short wave.

Solar eclipse in ICON

Source : M. Burba, DWD 14

Applications

• Initicon demonstrator Python plugin replace
ICON’s initialization module

• Machine learning applications
 Open ICON project 2024 – 2027

• Messy (see next talk)

• Encourage the natESM community to
contribute ComIn plugins

Further applications

15

Applications

Deutscher Wetterdienst (DWD)

Forschungszentrum Jülich (FZJ)

Florian Prill Mahnoosh
Haghighatnasab

Daniel Rieger

Deutsches Zentrum für Luft- und Raumfahrt (DLR)

Bastian Kern Kerstin Hartung Patrick Jöckel

Deutsches Klimarechenzentrum (DKRZ)

Nils-Arne
Dreier

Lakshmi Aparna
Devulapalli

Wilton Jaciel
Loch

Astrid Kerkweg

Team Members

Thank You

Mahnoosh Haghighatnasab
Deutscher Wetterdienst
E-mail:
mahnoosh.haghighatnasab@dwd.de Contact: comin@icon-model.org

mailto:mahnoosh.haghighatnasab@dwd.de

• Prometheus + Grafana:
popular monitoring system
and time series DB [1]

• “exporters” supply frontend
with data (via HTTPS)

• e.g. Prometheus
node_exporter:
exporter for machine metrics

• Proof-of-concept: connect
Grafana to ICON with a
ComIn exporter plugin

• Flexible monitoring
dashboard offered by
Grafana

Telemetry

Applications

11

https://grafana.com , https://prometheus.io/ Source: C. Eser (DWD-TI), FP

Overview Applications

• Point source
• Catalyst in situ

visualization
• Solar eclipse
• Further application

Discussion

.• Introduction about
ComIn

• Project history and
status

• Documentation
• Tests

Outline

• Important points
to discuss

1/16

Discussion

ApplicationsOverview Discussion

12/16

Expanding ComIn in other ICON Components

• Current support limitations:
• Only atmosphere component

• ICON Ocean as an example:
• Potential for broader application of ComIn

• Design and demand uncertainty:
• Developers face uncertainty
• Unclear demand from community
• Will ComIn remain a tool only for the atmosphere

component?

• Challenges in moving beyond the atmosphere
component:
• Human resources
• Technical :

• Descriptive data structure would lose its simplicity
• Granularity

13/16

ComIn’s role in the upcoming ICON rewrite

• Ongoing rewrites:
• ICON was undergoing a rewrite in Python as part of

the Exclaim project.
• But a more recent rewrite in C++ is also planned.

• Impact on ComIn:
• It is unclear how ComIn fits into this transition?
• Whether it will be supported in the new C++

version?

14/16

Do design decisions in ComIn restrict its broader
application?

• The limitations introduced by design decisions include:

• Granularity above the block loop level

• Only global ICON variables are exposed to ComIn

• Inability to switch ICON processes on or off via a
ComIn plugin

15/16

Is ComIn the right choice for your project?

• YAC vs. ComIn:
• YAC already has a Python interface and can couple

with ICON
• Why ComIn is necessary?

• Choosing the right tool:
• Based on their requirements, projects should consider

whether they need to use YAC, ComIn or bothe of
them?

• When YAC might be sufficient:
• YAC is not a replacement for ComIn but some projects

can be sufficiently supported by YAC

16/16

Embedded Python, wrapped pointers

• ComIn plugins makes use of an embedded Python interpreter.

• Executes a Python script in the primary constructor

• Field pointers are directly exposed to plugins, wrapped as NumPy arrays
GPU accelerators: device pointers wrapped by CuPy library

7

Overview

