
YAC, ComIn, and beyond – what
do you need from natESM?



Breakout Group: YAC, ComIn and Beyond

Mahnoosh Haghighatnasab (DWD) presented the basic idea and the 
current development status of the Community Interface (ComIn). She 
explained the use of the embedded Python interpreter and how ICON 
fields can be modified.

• The talk triggered many follow-up questions about concurrent 
execution of plugins, using different grids and domain 
decompositions.

Moritz Hanke (DKRZ) gave a short introduction on ICON"s coupler 
library YAC.

• Among the various presented use cases, the application of YAC to 
model input and output was given particular attention.

• Besides, YAC's built-in functionality to write and read interpolation 
weight files was discussed in the context of offline interpolation tasks, 
as well as its dependency on the YAXT communication library.



Breakout Group: YAC, ComIn and Beyond

Bastian Kern (DLR) summarized the design concept and the 
development history of the Modular Earth Submodel System MESSy.

• Here ICON constitutes only one of the regional and global NWP and 
climate models than MESSy can connect to. This interface was recently 
reimplemented as a ComIn plugin with the help of a natESM sprint.

• The talk also pointed out certain restrictions: What could be 
implemented in a MESSy-ComIn plugin - and which MESSy features 
require an adaptation of the ICON model itself. For example, 
temporary variables would have to be turned into global fields to 
become accessible by the plugins.

• The presentation concluded with a recipe on how to adapt an existing 
software package to ComIn in general.



Breakout Group: YAC, ComIn and Beyond
Afterwards, a general discussion followed, focusing on guidelines and the pros and cons of the 
different interface approaches for specific purposes.
Applications discussed: CLEO, ensemble data assimilation, ML experiments, the LSM sprint… reasons 
why YAC, ComIn, or a direct integration into the ICON code was chosen as an approach.

Criteria / Guidelines:
• Choice of programming language: Is Python or C++ better suitable for the task?
• Ease of access, eg. for master students
• Objective: not to enter the main code of ICON? 

Complexity in doing a MR to the big ICON source code
• Need for a stable interface for external code contributions, compatibility with future ICON versions
Additional strengths of the YAC coupler:
• does the model component need to run on different grids?
• placement on heterogeneous hardware?



Breakout Group: YAC, ComIn and Beyond

Thinking the vision of external plugins consequently to the end, would it make sense if ICON became a 
“skeleton”?

Certainly not.

• Switching off parameterization schemes involves tuning of the model as well, which takes time. The tuning 
of model components relies on a stable set of integral parameterizations.

• "Open development" would be pointless if the external contributions would not be fed feedback into ICON 
at some point. At least, certain plugins should be shipped with ICON.

Finally, the definition of "core model components" often is a rather political question.



Breakout Group: YAC, ComIn and Beyond
How could natESM address the above concerns and requirements?

• Can natESM offer a kind of platform or website to exchange ComIn plugins?

• Refactoring of ICON model needed in some parts: 
Eg., switching off parameterization schemes (for replacement) still not easily done in ICON.

• Could YAC be extended to a true 3D interpolation algorithm?

Uncertainty about the stability of interfaces with the background
Future WarmWorld plans: Single precision, refactoring the code into C++?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

