

Ice sheet modelling using the Ice Sheet and Sea Level System Model ISSM

Angelika Humbert, Thomas Kleiner, Martin Rückamp

The system

The system

Landscape

enthalpy core mass and momentum balance core (FS, HO, SSA) geometry (margins, ice thickness) core (friction inversion) forcing ingestion

naked ice sheet model

ISSM

enthalpy core mass and momentum balance core (FS, HO, SSA) geometry (margins, ice thickness) core (friction inversion) forcing ingestion

naked ice sheet model

ISSM - Greenland

Rückamp et al. 2020

Bondzio et al., 2017

ISSM - Antarctica

Wolovick et al., in print

Seroussi et al. 2020

Coupling

Performance

····· linear scaling

higher-order approximation

User community

Europe (12):

Germany: AWI, BAdW, TU Darmstadt, DLR Norway: U Bergen, U Oslo, NERSC Denmark: DTU, GEUS Sweden: Stockholm University Netherland: TU Delft UK: U Edinburgh

America (17):

USA: Dartmouth, JPL, UCI, Georgia Tech, UCLA, UCSD, U Maryland, Penn State, Buffalo, GSFC, Stanford, U Maine, UT Austin, UND, UAF Canada: Waterloo, Newfoundland U.

Oceania (4):

Australia: Monash, U Tasmania, ANU New Zealand: U Victoria

Asia (3): Korea: KOPRI, Kangwon China: National Academy of Sciences

50 active developers

Technical criteria natESM - ISSM

Technical criteria for becoming part of the natESM system

- 1. Well-defined Interfaces between Earth System Components $\star \star \star \star \star \star$
- 2. Allows Simulations from Global to Local $\star \star \star \star \star$
- 3. Exascale-Ready $\star \star \star \star \star$
- 4. Scalable Workflows?
- 5. Portability $\star \star \star \star \star$
- 6. Modularity $\star \star \star \star \star$
- 7. Data Assimilation Capacity $\star \star \star \star \star$
- 8. Diagnostic Capacity $\star \star \star \star \star$
- 9. User-Friendly and Well-Documented $\star \star \star \star \star$
- 11. Standardization? ESMF compliance $\star \star \star \star \star$
- 12. License of Useful Open-Source Type $\star \star \star \star \star$

ISSM – other Benchmarks

MISMIP+ Cornford et al. 2020

Model (submitter)	Result set	Basal stress	Englacial stress
BISICLES (Comford)	SCO_BISICLES_L1L2a_Tsai_500m SCO_BISICLES_L1L2b_Tsai_1km SCO_BISICLES_L1L2b_Tsai_250m SCO_BISICLES_L1L2b_Weertman_250m SCO_BISICLES_SSA_Schoof_250m SCO_BISICLES_SSA_Tsai_250m	Tsai Tsai Tsai Weertman Schoof Tsai	L1Lx L1Lx L1Lx L1Lx SSA SSA
CISM (Leguy)	GLE_CISM_SSA_Schoof_1km GLE_CISM_SSA_Weertman_1km	Schoof Weertman	SSA SSA
Elmer/Ice (Merino)	IME_ElmerIce_FS_Schoof_250m IME_ElmerIce_L1L2b_Schoof_250m	Schoof Schoof	FS L1Lx
ISSM (Borstad)	CBO_ISSM_SSA_Tsai_500m	Tsai	SSA
ISSM (Seroussi)	HSE_ISSM_HO_Weertman_1km HSE_ISSM_SSA_Tsai_1km HSE_ISSM_SSA_Tsai_500m HSE_ISSM_SSA_Weertman_1km	Weertman Tsai Tsai Weertman	HO SSA SSA SSA
ISSM (Yu)	HYU_ISSM_FS_Weertman_500m	Weertman	FS
ISSM (Dias dos Santos)	TDI_ISSM_SSA_Tsai_500m TDI_ISSM_SSA_Weertman_500m	Tsai Weertman	SSA SSA
ISSM (Christmann)	JCH_ISSM_HO_Tsai_200m	Tsai	НО
ISSM (Christmann) MALI (Hoffman)	JCH_ISSM_HO_Tsai_200m MHO_MPASLI_HO_Weertman_500m	Tsai Weertman	HO HO
ISSM (Christmann) MALI (Hoffman) PISM (Feldmann)	JCH_ISSM_HO_Tsai_200m MHO_MPASLI_HO_Weertman_500m JFE_PISM_SSA+SIA_Tsai_1km JFE_PISM_SSA+SIA_Weertman_1km JFE_PISM_SSA+SIA_Weertman_eta_lkm JFE_PISM_SSA+SIA_Weertman_eta_SG_1km JFE_PISM_SSA+SIA_weertman_eta_SG_1km JFE_PISM_SSA_Weertman_SG_1km JFE_PISM_SSA_Weertman_eta_SG_1km	Tsai Weertman Sai Weertman Weertman Sai Weertman Weertman Weertman	HO HO LILx LILx LILx LILx LILx LILx SSA SSA
ISSM (Christmann) MALI (Hoffman) PISM (Feldmann) PSU3D (Pollard)	JCH_ISSM_HO_Tsai_200m MHO_MPASLI_HO_Weertman_500m JFE_PISM_SSA+SIA_Tsai_1km JFE_PISM_SSA+SIA_Weertman_Ikm JFE_PISM_SSA+SIA_Weertman_SG_1km JFE_PISM_SSA+SIA_Weertman_eta_Ikm JFE_PISM_SSA+SIA_Weertman_eta_SG_1km JFE_PISM_SSA+SIA_eta_Tsai_1km JFE_PISM_SSA_Weertman_eta_SG_1km JFE_PISM_SSA_Weertman_eta_SG_1km DPO_PSU_HySSA_Weertman_10km DPO_PSU_HySSA_Weertman_1km	Tsai Weertman Tsai Weertman Weertman Tsai Weertman Weertman Weertman Weertman	HO HO LILx LILx LILx LILx LILx LILx SSA SSA HySSA HySSA
ISSM (Christmann) MALI (Hoffman) PISM (Feldmann) PSU3D (Pollard) STREAMICE (Goldberg)	JCH_ISSM_HO_Tsai_200m MHO_MPASLI_HO_Weertman_500m JFE_PISM_SSA+SIA_Tsai_1km JFE_PISM_SSA+SIA_Weertman_Ikm JFE_PISM_SSA+SIA_Weertman_eta_Ikm JFE_PISM_SSA+SIA_Weertman_eta_SG_1km JFE_PISM_SSA+SIA_Weertman_eta_SG_1km JFE_PISM_SSA+SIA_eta_Tsai_1km JFE_PISM_SSA_Weertman_SG_1km JFE_PISM_SSA_Weertman_eta_SG_1km DFO_PSU_HySSA_Weertman_10km DFO_PSU_HySSA_Weertman_1km	Tsai Weertman Sai Weertman Weertman Weertman Weertman Weertman Weertman Schoof	HO LILx LILx LILx LILx LILx LILx SSA SSA HySSA HySSA HySSA LILx
ISSM (Christmann) MALI (Hoffman) PISM (Feldmann) PSU3D (Pollard) STREAMICE (Goldberg) TIMFD3 (Kleiner)	JCH_ISSM_HO_Tsai_200m MHO_MPASLI_HO_Weertman_500m JFE_PISM_SSA+SIA_Tsai_1km JFE_PISM_SSA+SIA_Weertman_1km JFE_PISM_SSA+SIA_Weertman_eta_1km JFE_PISM_SSA+SIA_Weertman_eta_SG_1km JFE_PISM_SSA+SIA_Weertman_eta_SG_1km JFE_PISM_SSA_Weertman_SG_1km JFE_PISM_SSA_Weertman_eta_SG_1km DPO_PSU_HySSA_Weertman_10km DPO_PSU_HySSA_Weertman_1km DNG_STREAMICE TKL_TIMFD3_HO_Tsai_1km	Tsai Weertman Weertman Weertman Weertman Tsai Weertman Weertman Weertman Weertman Schoof Tsai	HO HO LILX LILX LILX LILX LILX SSA SSA HySSA HySSA HySSA LILX HO
ISSM (Christmann) MALI (Hoffman) PISM (Feldmann) PSU3D (Pollard) STREAMICE (Goldberg) TIMFD3 (Kleiner) Úa (Gudmundsson)	JCH_ISSM_HO_Tsai_200m MHO_MPASLI_HO_Weertman_500m JFE_PISM_SSA+SIA_Tsai_1km JFE_PISM_SSA+SIA_Weertman_Ikm JFE_PISM_SSA+SIA_Weertman_Ga_1km JFE_PISM_SSA+SIA_Weertman_eta_SG_1km JFE_PISM_SSA+SIA_Weertman_eta_SG_1km JFE_PISM_SSA_Veertman_SG_1km JFE_PISM_SSA_Weertman_Ikm DPO_PSU_HySSA_Weertman_1km DPO_PSU_HySSA_Weertman_1km DNG_STREAMICE TKL_TIMFD3_HO_Tsai_1km HGU_UA_SSA_Schoof HGU_UA_SSA_Stai	Tsai Weertman Weertman Weertman Weertman Tsai Weertman Weertman Weertman Schoof Tsai Weertman Schoof Tsai	HO HO LILX LILX LILX LILX LILX SSA SSA HySSA HySSA HySSA LILX HO SSA SSA SSA

Model name	Numerics	Stress balance	Resolution km	Initialization	SMB	Basal sliding/friction
	FD	Hybrid	16	Sn	ΡΑΓΜΟ2 1	Coulomb $a = 0.75$
ARC-PISM2	FD	Hybrid	16	Sp Sp	RACMO2.1	Coulomb $q = 0.75$ Coulomb $q = 0.75$ with sub-grid melting
AWI-PISMPal	FD	Hybrid	16	Sp	RACMO2.3	Coulomb $q = 0.6$
CPOM-BISICLES	FV	SSA*	0.5-8	DA+	Arthern	Weertman <i>m</i> = 3/Coulomb
GE-Elmer/Ice	FE	SSA	1-50	DA	MAR	Weertman $m = 3$
LTS-PIK-SICOPOLIS	FD	Hybrid	8	SpC	Arthern	Weertman $m = 3, p = 2$
MAU-ICE	FD	Hybrid	32 (★)	Eq	RACMO2.3	Coulomb $q = 0$
JPL-ISSM	FE	SSA	1-50	DA	RACMO2	Weertman $m = 1$
SCE-GRISLI	FD	Hybrid	16 (★)	EqC+	RACMO2.3	Coulomb q = 1
NCAR-CISM	FE/FV	L1L2	4	EqC	RACMO2.3p2	Weertman $m = 3$ /Coulomb
PSU-PSU3D1	FD	Hybrid	16 (★)	EqC	Arthern	Weertman $m = 2$
PSU-PSU3D2	FD	Hybrid	16 (★)	EqC	Arthern	Weertman <i>m</i> = 2 without cliff instability
JLB-f.ETISh	FD	Hybrid	16 (★)	EqC+	RACMO2.3	Weertman $m = 2$
DOE-MALI	FE/FV	LMLa	2-20	DA+	RACMO2	Weertman $m = 1$
୬IK-PISM	FD	Hybrid	4	EqC+	RACMO2.3p2	Coulomb <i>q</i> = 0.75

ABUMIP Sun et al. 2020

RCP8.5	Antarctica sea level contribution percentiles (m)					
Model	5%	16.6%	50 %	83.3 %	95 %	
AISM VUB	0.06	0.08	0.13	0.19	0.33	
BISI LBL	0.08	0.11	0.17	0.27	0.46	
CISM NCA	0.04	0.06	0.10	0.16	0.27	
FETI ULB	0.06	0.09	0.15	0.23	0.39	
GRIS LSC	0.03	0.04	0.07	0.11	0.18	
IMAU UU	0.11	0.17	0.26	0.42	0.70	
ISSM JPL	0.05	0.08	0.12	0.18	0.31	
ISSM UCI	0.12	0.18	0.27	0.41	0.71	
MALI DOE	0.07	0.10	0.15	0.23	0.40	
PISM AWI	0.05	0.07	0.11	0.17	0.30	
PISM DMI	0.15	0.22	0.33	0.47	0.83	
PISM PIK	0.07	0.11	0.19	0.31	0.48	
PISM VUW	0.17	0.24	0.38	0.60	1.03	
PS3D PSU	0.08	0.12	0.20	0.31	0.51	
SICO ILTS	0.14	0.20	0.33	0.50	0.86	
ÚA UNN	0.22	0.30	0.46	0.70	1.25	
All models	0.06	0.09	0.18	0.38	0.61	

LARMIP2 Levermann et al. 2020

